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ABSTRACT

Muscle fatigue is shown to be associated with incidence of musculoskeletal inju-
ries found with sports training and competition. The real-time detection of fatigue
onset allows preventative measures to be taken in time to minimize injuries. In this
paper, we aim to provide a framework that classifies muscle fatigue based on surface
electromyography (sEMG) features extracted during dynamic exercises. This includes
the use of data segmentation, real-time-compatible data normalization, a principal
component analysis (PCA) based feature reduction and Gaussian classifier methods.
An experiment has been carried out to acquire the sEMG signals of the upper two
pairs of rectus abdominis muscles of four healthy adult volunteers during weighted
decline and bench-assisted sit-ups. The collected sEMG signals are then segmented
into concentric and eccentric segments by using the inertial measurement unit (IMU)
data. Eight commonly used sEMG features are extracted from each segment. We fit
two Gaussian models (GMs) on the distribution of fatigued and non-fatigued data
samples and show that the GM can utilize this information to predict the number of
repetitions possible before task failure. We fit another set of GM on a reduced fea-
ture space by projecting the data onto principal component axes obtained through
singular value decomposition (SVD). By projecting the features onto the first two pri-
ncipal axes, we achieve similar accuracy and f1-scores compared to the GM by using
6 handpicked features. This reduction in the feature space greatly reduces the trai-
ning samples necessary for such class-imbalanced datasets. This classifier can also
be directly used in the real-time detection of muscle fatigue during dynamic move-
ments, which can be adopted in applications in sports, workplaces, and rehabilitation
sciences. These frequency-time characteristics also provide insight into the function of
low-level feature extractors when developing deep learning models to identify muscle
fatigue.

Keywords:

INTRODUCTION

Analyzing signals during dynamic contractions is an important avenue for
research as many injury-prone movements are dynamic in nature. Although
most research has focused on signals collected during isometric contractions,
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scholars have shown that proper segmentation methods between the concen-
tric and eccentric phases are promising to isolate the differences in dynamic
movements.

While scholars have found various time, frequency and time-frequency
domains, entropy-based features, and autoregression-based features to be
useful in various situations (Cifrek et al., 2009), the feature selection pro-
cess for specific applications is mostly obtained through experimentation.
Among the most widely studied muscle fatigue indicators are the decreasing
trend of the median frequency (MDF) and increasing trend of the mean abso-
lute value (MAV) of surface electromyography (sEMG) signals respectively.
Although the decreasing trend is consistent, there is large variance regarding
the value and scale of the MAV and MDF values between subjects and trials,
which renders them incomparable between exercise sessions without proper
normalization methods. This may be the reason why we cannot find studies
on real-time classifiers based on the MDF and MAV despite their popularity
in statistical analyses.

As for multivariate classifiers, researchers have attempted to extract mul-
tiple features from a single sEMG channel to perform multivariate classifica-
tion of muscle fatigue (Macisaac et al., 2006, Rogers and Macisaac, 2010).
Research in this direction is motivated by the variability in conventional
fatigue factors due to non-fatigue factors.

In sEMG, the principal component analysis (PCA) is used to integrate fea-
tures extracted from multiple channels of sEMG data collected from different
muscles to reduce the total number of features, which has been used in work
on gesture recognition (Geethanjali, 2015, Qi et al., 2020) to correlate per-
turbations within the sEMG signals of specific events (Yang et al., 2005)
More recently, PCA has also been used on signals collected from high-density
electrodes that decompose highly correlated sEMG signals from the same
muscle into individual motor unit action potentials (MUAPs) (Naik et al.,
2016, Staudenmann et al., 2006). Similar to our usage though is the use of
the PCA to identify the correlations of sEMG features that are potential indi-
cators of fatigue during dynamic movements (Rogers and Macisaac, 2011).
In cases where there are few training samples, the PCA is especially important
in training statistical classifiers such as the Gaussian model (GM), where the
number of features used for classification dictates the minimum class sample
size used during training (Gopinath, 1998). This requirement for a minimum
class sample size is exemplified by the class imbalanced nature of sports scie-
nce related topics, where training samples for classes such as ‘task failure’ or
‘muscle injury’ are much rarer compared to other class samples. In this study,
our aim is to establish the framework necessary to perform real-time muscle
fatigue detection for dynamic exercises with little training data.

METHODS

Participants

Four (4) female adults, (age: 26.5 ± 3.1 yrs old; height: 164.8 ± 5.7 cm;
and weight: 59.3 ± 10.6 kg) who had given informed consent participated
in the experiment. The inclusion criteria were to be between 19 - 30 years of
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age, with a body mass index (BMI) below 25, and physically fit for exercise
according to a pre-exercise screening tool (ESSA, Fitness Australia, and Sports
Medicine Australia, 2011). The experiment was approved by the Institutional
Review Board of The Hong Kong Polytechnic University.

Experiment Protocol

All of the subjects learned the correct forms of the decline sit-up prior to
the test. Under the guidance of a qualified personal trainer, the four subje-
cts performed weighted decline sit-ups on a workout bench (30° decline). By
holding different weighted dumbbells at the shoulder level, load was added
to the upper part of the body throughout the exercise. Subjects 1 to 3 were
required to complete 10 repetitions. The weights were adjusted between exe-
rcise sets by the personal trainer to ensure that the subjects are close to task
failure at the end of each exercise set. Subject 4 was required to repeat the
exercise until she could no longer complete a cycle (task failure).

The sEMG signals of both sides of the upper rectus abdominis were recor-
ded by using two Noraxon Ultium® EMG sensors at a sampling rate of
2000 Hz. A pair of electrodes (3M Red Dot 2228) were placed 2 cm apart on
the upper rectus abdominis parallel to the direction of the muscle fibre. The
trunk angle was also recorded at a sampling rate of 200 Hz by using inertial
measurement units (IMUs) embedded in the Ultium® EMG sensors.

Data Pre-Processing, Segmentation and Feature Extraction

All of the raw sEMG data were processed with a bandpass filter of
[20, 500] Hz, and then segmented into abdominal flexion (concentric) and
extension (eccentric) phases of individual repetitions according to the IMU
readings. Following the rotational movement of the torso during a sit-up
repetition, the accelerometer readings reached the minimum at full abdo-
minal extension, where the trunk was almost horizontal, and attained the
highest values at full abdominal flexion. IMU readings are used because it
was observed that local peaks and minimums of the amplitude of the sEMG
envelope do not necessarily correspond to the movement phases, especially
when the participants were fatigued. After segmentation, the first and last
repetitions of each exercise set were discarded to minimize variations unrela-
ted to muscle fatigue. From each concentric and eccentric segment, 4 features
were extracted: the MAV, power, Fourier-based MDF and wavelet-based
MDF (WMDF). Features from the concentric and eccentric segments were
then concatenated vertically to form a feature vector representative of the
repetition, x ∈ RN×1. This process is illustrated in Figure 1.

Training and Testing Dataset Split

Within each set of exercises, the last 20% of repetitions (rounded upwards)
for each subject within every set was labelled as the ‘fatigued’ samples and
all other samples were labelled as the ‘non-fatigued’ samples. Feature vectors
extracted from all exercise sets were concatenated horizontally to form the
training dataset Xtrain ∈ Rn×m and testing dataset Xtest ∈ Rn×k, where the
ratio of the training to testing samples is 8 to 2. The resulting datasets are
shown in Table 1.
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Figure 1: Segmentation and feature extraction.

Table 1. Training and testing sample size.

Subject 1 Subject 2 Subject 3 Subject 4

Training Dataset 302 samples 87 samples 307 samples 208 samples
Testing Dataset 74 samples 17 samples 81 samples 16 samples

Normalization of Interset Features Within Training Dataset

Although features may show consistent trends, they are not comparable
between sets. To compare between sets, we normalize the features of each
repetition within an exercise set according to the mean and variance of the
exercise set. This is a trivial step for the training dataset, where the mean and
variance of the exercise set are known as all data from all repetitions within
an exercise set are already collected. However, for the testing dataset (as well
as any real time applications), we do not have data beyond the current repeti-
tion and cannot directly calculate the mean and variance of the entire exercise.
To perform real time classification, we must estimate the mean and variance
of all the repetitions within an exercise set upon measuring the features of
the first few repetitions. Hence, we propose a simple method to estimate the
mean and variance of feature i within any exercise set by using the value of
the first feature xi,1. Treating each feature xi within feature vector x as an
independent random variable, we perform linear regression to approximate
the linear relationship between the value of the feature in the first rep xi,1
and the mean and variance of every exercise set within the training dataset.
The resulting linear relationship is represented by a linear term m and an
intercept term c , which can then be used to calculate the estimated mean µ
and estimated variance σ 2, given the values of the first repetition of a feature.
The linear relationship can be modeled as follows.

[
µi
σ 2

i

]
=

[
mi,1,µ
mi,1,σ2

]T [
xi,1
xi,1

]
+

[
ci,1,µ
ci,1,σ2

]
The result of this method is illustrated in Figures 2 and 3.
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Figure 2: Normalization of training set using known mean and variance of set.

Figure 3: Normalization of testing set using estimated mean and variance of set.

Gaussian Model Estimation

We assume that for each subject for each class, feature i extracted from each
segment x can be modelled as a continuous random variable represented as

xi = E [xi] + ε, where ε ∼ N(0, σ 2)

Multiple features within a feature vector of length N then have a mean
vector µ and covariance matrix σ 2 such that

µ=E [x] = 1
N

∑N
i = 1 xi and σ 2

= E
[
(xi − E [xi]) (xi − E [xi])T

]
For each subject, two GMs are fitted for class Cf for fatigued muscle

signals, and class Cn for non-fatigued muscle signals.

Gaussian Classifier

The likelihood for each class given measurement x for the Gaussian
distributions is:

P
(
Cf | x

)
= p

(
x; µf , σ f

2
)

P (Cn | x) = p
(
x; µn, σn

2
)

where µf , σ f
2 and µn, σn

2 are the mean vector and covariance matrix for the
fatigued and non-fatigued muscles respectively.
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Hence the posterior probability of the fatigued muscles is

P
(
Cf
∣∣x) = P

(
Cf
)
p
(
x; µf , σ f

2)
P
(
Cf
)
p
(
x; µf , σ f

2
)
+ P (Cn)p

(
x; µn, σn2

)
where P

(
Cf
)

and P (Cn) are the prior probability for the fatigued and non-
fatigued muscles respectively.

Given our definition of fatigue as the last 20% of repetitions possible by
the subject, we can simplify the posterior probability as

P
(
Cf
∣∣x) = 2 ∗ p

(
x; µf , σ f

2)
2 ∗ p

(
x; µf , σ f

2
)
+ 8 p

(
x; µn, σn2

)
Given that our case is a binary classification problem, the expectation

maximization problem takes the form of

x is
{

Fatigued if P
(
Cf | x

)
> P (Cn | x)

Not Fatigued otherwise

Principal Component Analysis and Feature Reduction

The singular value decomposition (SVD) is a method of approximating the
factors of a matrix into the product of three matrices by expressing an m-by-n
matrix X as

X = U6VT

where U and V are the unitary matrices and6 a diagonal matrix that contains
the singular values on its diagonal. We transpose our normalized training and
testing dataset to the form of Xtrain

T
∈ Rn×m and Xtest

T
∈ Rn×k. Then we

perform a support vector machine (SVM) to the training set, which already
fulfils the requirements of a zero mean input matrix with normalized units.
After performing an SVD, we project both the training and testing datasets
onto all eight principal axes by multiplying the right unitary matrix V∈ Rn×n

by the training and testing datasets such that

Xtrain,projected = V ×Xtrain

Xtest,projected = V ×Xtest

Within this projected feature space, we train and evaluate another set of
GMs on the first n-dimensions. Classification results that yield similar or
better results in terms of accuracy and f1-scores represent a success in feature
reduction.

EXPERIMENT RESULTS AND DISCUSSION

First, we performed experiments to manually search for the best perfor-
ming combination of features, the results of which we used as the baseline
(Table 1). When only using 2 features for classification, we find that power
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Table 2. Results of various feature combinations. The average of the F1 scores, wei-
ghted according to the number of samples within the dataset, is used as the
metric for evaluation. Best f1-score using 2, 4, 6 and 8 features is bolded.

n.of
features

Features used
for
classification

Subj 1
F1

Subj 2
F1

Subj 3
F1

Subj 4
F1

W. Avg
F1

Non-
PCA

2 emav, cmav 0.619 0.462 0.519 0.667 0.597
2 epow, cpow 0.429 0.800 0.375 0.750 0.466
2 emdf, cmdf 0.560 0.533 0.550 0.889 0.581
2 ewmdf, cwmdf 0.625 0.500 0.531 0.667 0.577
4 emav, emdf,

cmav, cmdf
0.694 0.615 0.553 0.667 0.624

4 emdf, ewmdf,
cmdf, cwmdf

0.593 0.533 0.605 0.667 0.599

6 all except pow 0.630 0.571 0.651 0.857 0.653
8 all 0.625 0.333 0.578 0.667 0.582

Table 3. Comparing f1-scores of Gaussian classifiers
trained on original feature space (best combi-
nation selected), and projected feature space
obtained from PCA.

F1 Scores

n.dim Original Feature Space PCA Feature Space

2 0.597 0.640
4 0.624 0.583
6 0.653 0.643
8 0.582 0.582

during the concentric and eccentric phases (cpow and epow respectively) per-
forms the worst. We further experiment with 4 and 6 feature combinations,
and find that the best performing feature combination is using the MAV, MDF
and WMDF from both the concentric and eccentric phases, which achieves
an average F1 score of 0.65 across the 4 subjects.

We proceed to project the features onto the first n principal component
axes and train a Gaussian classifier on this projected feature space, the
performance of which is compared with the best results from the previous
experiment (Table 2). Unsurprisingly, the best performance still belongs to the
6-feature combination from the original feature space, which was obtained by
manually searching for the best performing feature through experimentation.
However, 2-dimensional and 6-dimensional GMs trained on the projected
feature space obtained through the PCA also achieve very similar results.

The ability to reduce the dimensionality of the feature space is an important
consideration when training statistical classification models, as the number
of dimensions used for classification directly influences the number of trai-
ning samples needed. Our results show that by using PCA, we can reduce the
feature space from 6 to 2 dimensions and achieve similar results. When we
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consider 2-dimensional feature spaces, the PCA yields a significant impro-
vement over even the best results from the original feature space, as the
PCA allows data on higher dimensions to be projected onto the 2-dimensions
and used for classification. Furthermore, these results show that our propo-
sed method of estimating the mean and variance for real-time normalization
can yield reasonable results for Gaussian classifiers, regardless of the feature
space used.

Limitation

It is important to note that our dataset size is small and drawn from a specific
demographic, namely young female adults with a similar BMI. Additionally,
exercise sets where signals have high noise are discarded to ensure that our
dataset is as clean as possible. Lastly, our methodology has only been applied
to the rectus abdominus muscles only during one type of exercise.

CONCLUSION

In this paper, we have outlined the framework necessary to perform real-
time muscle fatigue detection for dynamic exercises with little training data.
We tackle the non-stationarity of dynamic movements by segmenting move-
ments into concentric and eccentric segments. We normalize data so data
can be compared between sets. To normalize our test dataset without ‘future
data’, we exploit the linear relationship between the first set and the mean
and variance of the entire set. We then outline the assumptions of gaussian
models and the decision rules of the Gaussian classifiers. Lastly, we use Princi-
pal Component Analysis for feature reduction in conjunction with Gaussian
classifiers to achieve reasonable F1-scores.
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