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ABSTRACT

One of the key aspects for an efficient cooperation between human driver and auto-
mated vehicle lies in the accurate interpretation of the driver state by the automated
system. In this respect, detecting the activity performed by the driver of the automated
vehicle can provide tremendous data about the driver state. Most of the existing stu-
dies on driver activity detection utilize intrusive sensors that are not desirable in real
vehicles, or employ cameras that are sensitive to lighting conditions, placement of
camera, and occlusion of body parts. The aim of the contribution at hand is to develop
a generalized activity recognition method with high accuracy using unobtrusive sen-
sors. For this purpose, two pressure sensor mats are used that are placed on the seat
and the back of the driver seat. This type of sensor is non-intrusive and can be easily
applied in vehicles. To gather the necessary data for training and test the models,
an experiment is conducted using a static driving simulator whose cockpit layout is
comparable to that of a real vehicle. The experiment is executed with eight sparsely
selected participants based on the fractional factorial criteria for training data and two
randomly selected participants for test data. During the designed scenario, 20 activi-
ties are expected from the participants, either directly through the given instructions
or indirectly through the arranged driving situations. To model the driver activities,
three neural networks from the RNN family are chosen, namely bidirectional LSTM,
stacked bidirectional LSTM, and CNN-LSTM. Since the data obtained from the activi-
ties are time series, the criterion for selecting the networks is their capability to handle
the temporal aspect of the data. Another emphasis in training the networks is to create
a generalized model that can deal with the data from all drivers, rather than creating a
subject-dependent model. The trained bidirectional LSTM, stacked bidirectional LSTM,
and CNN-LSTM, achieved accuracy of 90.2 %, 91.3 %, and 90.8 %, respectively , for 21
classes, which is a higher detection performance compared to the state-of-the-art. The
results show that the pressure distribution from seat and back of drivers provide valu-
able information about the current activity of the driver and the use of seat pressure
sensors is recommended due to their unobtrusiveness and robustness.
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INTRODUCTION

Flawless driver monitoring and consequently successful driver-vehicle intera-
ction can increase safety of the traffic in the future when automated agents
are one of the involved road users. Driver activity recognition is an important
component of driver monitoring, as drivers in automated vehicles are allowed
to engage in non-driving related tasks (NDRTs). According to SAE (J3016)
identifying NDRTs is crucial in the design of takeover interface. Detecting
these activities during driver monitoring can improve assessment of auto-
mated system about driver’s readiness to react in critical driving situations.
However, the confined space hinders the in-vehicle activity detection by sen-
sors such as cameras, which require a complete overview of the driver’s body
movements within the frames. On the other hand, utilizing other sensors such
as accelerometers, placed on the driver’s body is obtrusive and undesirable in
the driving context. The use of seat pressure sensors provides a non-intrusive
data collection platform that can be applied to all vehicles. The collected data
can be deployed to train the learning models. The generated models can be
employed at lower automation levels to estimate the engagement of drivers
in driving task, as well as at higher automation levels to predict readiness of
drivers for potential takeover situations. In addition, accurate estimation of
driver state helps the automated system to increase the comfort and improve
driver state and sense of well-being. Fusion of the seat pressure distribution
and data from other unobtrusive in-vehicle sensors, in the next step, can
further increase the accuracy of the models.

RELATED WORKS

Most studies on activity recognition related to drivers are based on data col-
lected from cameras. Xing et al. 2019 use a Gaussian mixture model and
convolutional neural network (CNN) to recognize seven driver behaviors,
including driving normally, checking three mirrors, using an in-vehicle radio,
texting, and answering mobile phone calls. Data are collected from ten par-
ticipants using a low-cost camera during a natural driving situation. The
achieved average accuracy of the recognition task after network improvement
by transfer learning on AlexNet (Krizhevsky et al. 2012) is 81.6%. In a study
by Walocha et al. 2022, video data are fed into OpenPose (Cao et al. 2017)
to recognize the position of hands and head orientation. A Gaussian mixture
model is then used to quantify the distance between the hands and the regions
of interest, and a linear support vector machine (Cortes and Vapnik, 1995)
is trained to classify the driver activity. To collect data, a study is conducted
with 32 participants in a driving simulator with dynamic lighting conditions.
A total of three activities, consisting of manual driving, mobile office activi-
ties with different levels of exertion, and relaxation, are labeled. The results
show the average accuracy for the three classes to be 85.0%.

Assuming that drivers look at what they are performing, Yang et al. 2021
classify driver activities based on the gaze direction. For this purpose, two
cameras are mounted, one pointed at the driver to capture facial data and the
other at the instruments in the cabin to capture the scene. Images at 25 frames
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per second (fps) are collected from six participants, and eight markers are pla-
ced in the camera’s field of view on the windshield, dashboard, steering wheel,
mirrors, and center console. The facial features are extracted using OpenFace
(Baltrusaitis et al. 2018) and the gaze is mapped by adding images from the
scene camera. Then, the images and mapped gaze data are fed into a Mask
R-CNN model (He et al. 2017) to classify five activities that require visual
attention: reading a book, playing on a phone, working on a laptop, playing
on a tablet, and interacting with the center console. The average success rate
is 86.2%. In another study (Pan et al. 2021), data are collected from seven
drivers during natural driving on a predefined route and in a stopped vehicle
while mimicking non-driving related tasks (NDRTs) through a monocular
camera on the driver’s right side attached to the vehicle. Classified activities
include normal driving, turning left or right, texting, talking on the phone,
using media, drinking, and picking up objects. Three distinguished classes
of long short-term memory (LSTM) are trained and compared for the reco-
gnition task, and the highest recognition rate of 88.8% is achieved with the
spatial-temporal graph convolutional LSTM (ST-GCLSTM), which consists
of a graph convolutional network and a single-layer LSTM with 128 units
and attention mechanism.

Wharton et al. 2021 propose coarse temporal attention network (CTA-
Net), a trainable glimpse network with attention mechanism, to detect driver
activities from RGB video data. The network is trained and tested on two
datasets. The achieved accuracy is 84.1% in the AUC Distracted Driver
Dataset (Abouelnaga et al. 2017), which contains video recordings of dri-
vers during a naturalistic drive in a real vehicle, and 92.5% in the Distracted
Driver V2 dataset (Eraqi et al. 2019), which contains videos of participants
in a driving simulator where the drivers’ entire bodies are captured by a
camera. Both datasets contain ten activity classes, e.g., safe driving, texting.
It can be concluded that the inclusion of whole-body motion in the camera
image increases the performance of the classifiers, which is not possible in
real vehicles due to the limited space in the driver’s cabin. Nel and Ngxande,
2021 use residual neural networks (ResNet, He et al. 2016) with spatial-
temporal three-dimensional kernels for activity recognition and compare the
performance of different depths of the same network. To increase accuracy,
the networks are pre-trained on the Kinetics-400 human activity recognition
video dataset (Kay et al. 2017). The pre-trained networks are trained and
tested on two datasets, the Kaggle State Farm Distraction Dataset (Kaggle,
2016) and the AUC Distracted Driver Dataset, and the accuracies achieved
are 92.9% and 94.0%, respectively. A total of ten in-vehicle activities such
as reaching behind, talking on the phone, and drinking are classified.

The use of infrared or thermal cameras can overcome the vulnerability of
camera-based approaches to lighting changes and darkness. However, there
are limitations in camera placement that cause the lower body to be out of the
camera’s field of view and body parts to be occluded by objects or other body
parts. To avoid the limitations of camera-based approaches, Duan et al. 2018
propose WiDriver, an activity detection system based on WiFi channel state
information (CSI) that requires only a commodity WiFi device. WiDriver is
based on the Fresnel zone model (Zhang et al. 2017) with 2.4 GHz WiFi
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Figure 1: The experimental setup for acquisition of driver activity data.

signal frequency and 12 cm wavelength. The network receives CSI amplitude
variation data as input and is able to detect the time course of driver postures.
In Duan et al. 2018, eight actions are detected, including driving straight,
changing lanes to the right or left, turning right or left, turning, making phone
calls, and sending messages, and a detection rate of 90.8% is achieved.

The contribution at hand is based on a previous pilot study (Dargahi
Nobari and Bertram, 2022) that investigates the feasibility of subject-
dependent activity recognition based on pressure distribution captured by
pressure sensor mats placed on the driver’s seat and backrest. The results
of the previous pilot study with four participants showed a maximum
subject-dependent accuracy of 86% for the detection of twelve activities. The
subject-dependent network consisted of a layer of LSTM with 200 units fol-
lowed by a dense layer. In the present contribution, the same sensors are used
to collect data from more participants with extended activities on a driving
simulator, and the goal is to train a generalized activity detection model that
is subject-independent and can recognize 21 activity classes.

CREATION OF DATASET

To evaluate the proposed method, the activity data of the participants should,
first, be collected using the pressure sensor mats. Therefore, an experiment
is conducted on a driving simulator with a limited number of participants
performing different activities during manual and automated driving. In the
following subsections, the experiment and the data collection procedure are
explained in detail.

Apparatus

The experiment in performed in a static driving simulator. The hardware
of the simulator consists of a driver mockup, three displays in front of the
mockup to visualize the driving scene and the cockpit mirrors, a display beh-
ind the steering wheel that acts as a dashboard, and a display on the right
side of the driver that acts as a center console. There is also a platform on
the right side of the driver’s seat that imitates the passenger seats and glo-
vebox. The experimental setup is shown in Figure 1. The SCANeR studio1

1https://www.avsimulation.com/solutions/
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Figure 2: BodiTrak2 Pro pressure sensor mat with 32 × 32 sensor matrix.

2021 software is utilized as virtual platform of the experiment. To capture
the pressure distribution, the simulator is equipped with two BodiTrak2 Pro2

mats placed on the seat and the backrest of the driver seat. Each mat consists
of 32 × 32 pressure sensors (Figure 2) with a total measurement area of 46
cm × 46 cm.

Sample

Subjects are selected based on four characteristics: height, body mass index
(BMI), age, and gender. To determine the joint effect of the factors, facto-
rial designs can generally be used that consider the combination of all levels
of all factors. In this experiment, the four characteristics are assumed to be
factors with two levels each. When all factors have two levels, the factorial
design is called a two-level factorial design, where an increase in the num-
ber of factors means an exponential increase in the number of combinations
and, consequently, an exponential increase in the number of participants
required (Montgomery, 2017). In this case, the fractional factorial design
can be applied, where unlike the factorial design, some of the combinations
that consider the joint effect of a higher number of factors are neglected to
keep the number of factor combinations in the feasible range. In the designed
trial, eight participants are selected based on the two-level fractional facto-
rial design to collect training data, and two random participants are selected
to test the trained models. Participants’ characteristics and the levels of each
characteristic are listed in Table 1.

Experiment Procedure

The entire experiment takes less than one hour for each attendee. At the
beginning, the participants receive information about the experiment and its
goals. Then, the driving simulator and sensors are explained to the subjects.
After signing the consent form, drivers are asked to practice driving in the
simulator to get used to the virtual environment. Once drivers are comfor-
table with driving in the simulator, the main part of the experiment begins
with two driving scenarios. The driving scenarios include manual driving
to record driving-related activities and automated mode to record data when
drivers are engaged in NDRTs. Drivers are always given auditory instructions
on when and how to perform the next NDRT.

2https://www.boditrak.com/products/medical/wheelchair/pro.php



208 Dargahi Nobari and Bertram

Table 1. Characteristics of the participants.

Characteristic Height [cm] BMI Age Gender

Level definition 1 ≤170 ≤ 22 50 < F
2 175 ≤ 25 ≤ < 30 M

Levels of
training subjects

P1 1 1 1 1
P2 1 1 1 2
P3 1 2 2 1
P4 1 2 2 2
P5 2 1 2 1
P6 2 1 2 2
P7 2 2 1 1
P8 2 2 1 2

Levels of test
subjects

P9 - 2 - 2
P10 1 1 - 1

P: participants, F: female, M: male, - : between two levels

Data Collection, Labeling and Preprocessing

The sampling time for data acquisition is set to 0.06 s (sampling rate
of 16.7 Hz). The pressure data of all pressure sensors in the two mats
(32 × 32 × 2 pressure values for each frame) are recorded. The simulation
software (SCANeR) is programmed to record the labels as well. Each frame
can have more than one label, depending on what the driver is doing. For
example, the driver may steer to the right and accelerate at the same time, so
the data will have two labels at the same time. After recording, the multi-label
data are divided into sliding windows of 3 s (50 frames) and with an overlap
of 2 s. To determine the final labels of each window, the mean value for each
label in the window is calculated and rounded to a binary value.

ACTIVITY RECOGNITION APPROACH

In this study, both driving-related activities and NDRTs are taken into
account. The driving simulator is set to automatic mode, so driving-related
activities are limited to accelerating, braking, right and left steering. Engaging
the clutch and gearbox are not considered. The NDRTs are selected based on
a previously conducted survey (Yang et al. 2018) that reveals the most com-
mon secondary activities performed by drivers when driving manually and
the most desiredNDRTs that drivers would like to perform during automated
driving. A total of 20 activity classes are labeled. The times when the drivers
do not perform any of the mentioned activities are labeled as “no action”.
Table 2 shows the included activities, their description, and the total num-
ber of samples for each activity used to build the driver activity recognition
models.

Since the data obtained from the activities has temporal aspect, the crite-
rion for selecting the networks is their ability to process sequential data and

3https://www.kiloo.com/subway-surfers/
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Table 2. Applied activity classes.

No. Activity Description and variations Samples

1 Enter Get in the simulator and fasten the seatbelt 250
2 Gas Press the accelerator pedal with varying intensities 250
3 Brake Press brake pedal with various intensities 185
4 Steer right Steer right - from large radius to U curves 215
5 Steer left Steer left – from large radius to U curve 223
6 Eat Open the cookie bag and eat cookies 250
7 Drink Take a water bottle, open it and drink water 239
8 Call Take the mobile phone and answer the call 182
9 Message Take the mobile phone and check the notifications 214
10 Infotainment Interact with the center console 172
11 Laptop Take the laptop and fill out a form 205
12 Tablet Take the tablet and play the game Subway Surfers3 184
13 Read Read a text on the center console 231
14 Write Take a notebook and write in it 250
15 Movie Watch a movie on the center console 238
16 Glovebox Pick up an object from the glovebox 159
17 Pick up front Pick up an object from the front seat 78
18 Pick up back Pick up an object from the back seat 75
19 Relax Slide forward on the seat, close the eyes and relax 204
20 Leave Get out of the simulator 235
21 No action Do none of the above activities, observe the surrounding 250

time series. In this contribution, three models from the recurrent neural netw-
ork (RNN) family, namely bidirectional LSTM (Hochreiter and Schmidhuber,
1997, Graves et al. 2013), stacked bidirectional LSTM, and CNN-LSTM
(Donahue et al. 2015), are trained with the collected data. Figure 3 shows the
detailed structure of the networks. The data collected from the eight sparsely
selected participants are used to build a generalized subject-dependent model.
Depending on the number of trainable parameters, a dropout layer is added
after the LSTM layer during the training process to reduce the overfitting
effect.

EVALUATION AND FUTURE WORK

Specifically, the networks are trained with the data from eight sparsely sele-
cted participants, and the data gathered from two random participants are
applied for evaluation of the networks. The accuracies of the proposed
models are reported in Table 3.

Due to the GPU limitation, the trainable parameters of the CNN-LSTM
were kept low, resulting in relative underfit. Nevertheless, all models reach
an accuracy of more than 90%. According to the obtained results, with an
appropriate selection of data points, it is possible to train a generalized acti-
vity recognition model with a limited number of participants. In addition to
the performance of the three trained networks, Table 3 also presents a com-
parison with the state-of-the-art in driver activity recognition. Although in
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Figure 3: Architecture of the networks used for the driver activity recognition task.

Table 3. Assessment of the recognition models.

Source Method NC Sensor Dataset Acc[%]

Xing et al. 2019 CNN 7 Camera From 10 drivers 81.6
Pan et al. 2021 Vanilla LSTM 8 Camera From 7 drivers 82.1
Wharton et al. 2021 CTA-Net 10 Camera AUC distraction 84.0
Walocha et al. 2022 Linear SVC 3 Camera From 32 drivers 85.0
Yang et al. 2021 Mask R-CNN 5 Dual

cameras
From 6 drivers 86.1

Pan et al. 2021 ST-GCLSTM 8 Camera From 7 drivers 87.9
Pan et al. 2021 SC-GCLSTM

attention
8 Camera From 7 drivers 88.8

Duan et al. 2018 WiDrive 8 WiFi From 5 drivers 90.7
Wharton et al. 2021 CTA-Net 10 Camera Eraqi et al. 2019 92.5
Nel et al. 2021 ResNet-3D 10 Camera State farm driver 92.9
Nel et al. 2021 ResNet-3D 10 Camera AUC distraction 94.0
Ours Bidirectional 21 Pressure From 8 drivers 90.2
Ours Stacked 21 Pressure From 8 drivers 91.3
Ours CNN-LSTM 21 Pressure From 8 drivers 90.8

NC: number of classes

the present study the number of activity classes is significantly higher compa-
red to previous works and only the data from seat pressure sensors are used,
the achieved accuracy is comparable to the state-of-the-art.

In the present study, the proof of generality concept is done based on data
collected from two randomly selected drivers. In the next step, the activity
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recognition algorithms should be tested with more drivers with diverse chara-
cteristics. Moreover, the addition of other data sources such as other sensors
or vehicle driving dynamics should be taken into account to further improve
the performance of the classifiers.
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