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ABSTRACT

Brain Computer Interfaces (BCIs) strive to provide a communication channel between
the human brain and the environment without relying on overt actions as the driver
of BCI output. To achieve this goal, BCIs convert recordings of neural activity into
commands to an external device. One of the most common BCI methods is based on
matching of spectral characteristics of EEG sensorimotor rhythms (SMR) to motor ima-
gery attempts. While such motor-imagery BCI have been extensively studied, little is
known about the possibility of using tactile imagery as a BCI component. Here we stu-
died EEG modulations associated with tactile imagery and obtained results suggesting
that this approach could improve BCI operations.
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INTRODUCTION

Brain Computer Interface (BCI) is a communication system between the brain
and an external world. BCIs bypass the brain’s natural output – muscles and
peripheral nerves – and connect to the brain directly as the source of com-
mands (Wolpaw et al., 2002). While theoretically invasive recordings with
the electrodes inserted in the brain could enable the best-quality communi-
cation, BCIs based on noninvasive electroencephalography (EEG) recordings
from the human scalp are currently the most practical and popular appro-
ach. Among the EEG-based BCI designs, motor imagery-based BCIs have
attracted lots of attention from the researchers, and many articles have been
published on this type of BCI. In this approach, a subject imagines perfor-
ming movements without executing them. Next, this endeavor causes an
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attenuation sensorimotor rhythmic activity (Pfurtscheller & Neuper, 2001),
which could be detected by a BCI decoder and converted into an output
signal. Remarkably, motor-imagery BCI could be applied to a range of clini-
cal applications, including applications for poststroke rehabilitation (Silvoni
et al., 2011; Pichiorri, 2016; Frolov et al., 2018), neuroprosthetics (Meng
et al., 2016; Frolov et al., 2018), and device Ñ'ontrol (LaFleur et al., 2013;
Fernández-Rodríguez et al., 2016).

Several motor-imagery studies have included a tactile component, which
improved BCI operations (Natio et al., 2002; Forukas, Ionta&Aglioti, 2006;
Mizuguchi et al., 2009; Mizuguchi et al., 2012). Technically, both motor ima-
gery and tactile stimulation have similar effects on EEG. Thus, event related
desynchronization (ERD) is observed during voluntary movements, imagery
of such movements and tactile stimulation (Pfurtscheller & Da Silva, 1997;
Neuper,Wörtz & Pfurtscheller, 2006). Such ERD depends on corticothalamic
interactions, and for modulations of SMR in the alpha range (8-13 Hz) the
source can be localized to the sensorimotor cortex (Hari & Salmelin, 1997;
Frolov et al., 2012). Moreover, Frolov et al., have shown that the sources
most relevant to motor imagery are localized in the primary sensorimotor
cortex. These finding points to the somatosensory cortex as the major player
in the formation of internal brain states representingmotor imagery. Based on
these results, it is reasonable to suggest that imagining being touched would
cause EEG modulations in the same brain areas, like activation of the pri-
mary somatosensory cortex during tactile imagery (Schmidt, Ostwald and
Blankenburg, 2014; de Borst and de Gelder, 2017; Schmidt and Blanken-
burg, 2019). Yet relatively little is known about the effects of tactile imagery
on EEG activity and the ways such imagery could be incorporated in BCI
designs.

To address this knowledge gap, the main idea of this study was to use
mental tactile images instead of traditional motor ones to induce EEG chan-
ges driving a BCI. Accordingly, we investigated spatio-temporal features of
mu ERD patterns during tactile stimulation (TS) and tactile imagery (TI) and
performed an offline classification of this imagery.

METHODS

Eleven healthy naïve volunteers (8 female, mean age 21,8±1,19) participa-
ted in the study. All the participants reported no psychiatric and neurological
disorders and gave their written consent to participate in the study. The expe-
rimental protocol was approved by the LomonosovMoscow State University
Committee for bioethics and carried out in accordance with the Declaration
of Helsinki.

During the experimental session, the subjects were seated in a comfortable
armchair. Vibrotactile stimulator was applied on the right-hand inner surface
to achieve relevant somatosensory experience before performing an imagery
task for the same hand. After 45 somatosensory stimulation trials lasted 6
s, participants were asked to reproduce the sensations mentally. There were
45 trials of right-hand tactile imagery divided into 3 runs between which the
participants had the opportunity to take a short break (1-2 min). Eight out
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of twelve participants were additionally asked to perform tactile imagery of
the left-hand tactile stimulation without the previous stimulation. The total
amount of left-hand imagery 6s trials was 15. All imagery trials were mixed
with the resting state trials randomly.

30 channels of EEG were recorded using the NVX-52 (MKS, Russia) digi-
tal amplifier. Electrodes were placed according to the 10/10 international
system. The skin impedance for each electrode did not exceed 20 k�. The
recording signal was sampled at 500 Hz with a 50 Hz Notch filter.

The effects of tactile imagery were assessed as changes in the amplitude of
sensorimotor oscillations in the range 8-15 Hz. The raw signal was bandpass
filtered in the range 1-30 Hz using a zero-phase bandpass FIR filter. The
signal was then segmented into 6-s epochs for each experimental condition
(right hand tactile stimulation, right hand tactile imagery and left-hand tactile
imagery). Continuous wavelet transform with variable number of cycles was
performed to assess time-frequency parameters for exploring conditions. The
wavelets frequencies ranged from 5 to 30 Hz with a 1-Hz step, the full-width
at half-maximum (FWHM) was equal to 60 ms corresponding to a spectral
FWHM of 2.5 Hz. ERD/S was calculated as a natural logarithm of the ratio
in spectral power between sensorimotor state and the rest (units in dB). For
topographical mapping ERD/S values from each channel were averaged over
time and individual frequency range.

For offline classification the signal was filtered in the individual freque-
ncy range and then spatially filtered using the Common Spatial (CSP) filter
(Ramoser et al., 2000) which yielded the classification feature with amaximal
difference between the classified mental states. BCI classification accuracy
was calculated for each subject on trials with two classes: a) right hand tactile
imagery vs rest, b) left hand tactile imagery vs rest and c) right-hand tactile
imagery vs left hand tactile imagery. Classificationwas performed using linear
discriminant analysis (LDA). For each classified pair, we used 4 CSP features
that had maximal differences. The implementation of the CSP algorithm and
offline classification was based on the Python library MNE 0.23 (Gramfort
et al., 2013).

RESULTS AND DISCUSSION

The participants consistently generated contralateral ERD patterns for the
alpha (mu) activity (10-15 Hz) recorded over sensorimotor areas. These pat-
terns were genetated during right-hand tactile stimulation and tactile imagery
of each hand. The spatial-frequency characteristics of the ERD imagery pat-
terns were quite typical for the effects of tactile stimulation (Fig. 1). Offline
classification of the 3 condition pairs showed good performance in terms of
accuracy, that was above the chance level (50%) and exceeded 70% for all
classified conditions.

Event Related Desyncronization During Tactile Stimulation
and Imagery

We observed contralateral ERD in the mu range (10-15 Hz) during both
tactile stimulation and imagery. ERD appeared from the start of the task
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Figure 1: Left. Time-frequency dynamics of the contralateral desynchronization for
tactile stimulation of the right hand (C3), tactile imagery of the same hand being stimu-
lated (C3) and tactile imagery of the left hand (C4). Right. Topographic maps of ERD/S.
Blue colors correspond to event related desynchronization (ERD), red designates
synchronization (ERS). Green color corresponds to an absence of EEG modulations.

performance and lasted throughout the 6-s trial. Both right-hand TS and TI
caused a contralaterally centered ERDwith the maximum on the C3 channel.
Tactile stimulation was associated with a slightly higher level of desynchroni-
zation compared to the TI of the same hand (Fig. 1). Yet these differences were
small, and statistical comparison at the group level did not reveal significant
differences between TS and TI (Wilcoxon signed rank test). We concluded
that right-hand TI led to consistent contralateral ERD, and this effect was
of the same magnitude as the one observed during the actual vibrotactile
stimulation.

During tactile imagery of the left hand, we observed a contralateral ERD
pattern, with the maximum desynchronization intensity on the C4 chan-
nel (Fig. 1). It is important to note that subjects did not practice with the
actual vibrotactile stimulation of the left hand, which points to their ability
to generalize this sensation to different parts of the body.

Classification Accuracy

During offline classification, we calculated classification scores on the tri-
als of two classes: right/left-hand TI and resting state. Average classification
accuracy for right -hand TI vs rest was 0.71±0.19 with individual values
ranging from 0.43 to 0.94. For the classification of the left-hand TI vs rest,
average classification accuracy was 0.73±0.1 (individual ranging from 0.57
to 0.93). For the classification of the left-hand TI vs right-hand TI, ave-
rage classification accuracy was 0.82±0.09 (individual ranging from 0.68 to
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Figure 2: Mean values for classification accuracy for the explored mental states. White
dashed line corresponds to the chance level.

Figure 3: An example of CSP-features that differed the most across the two considered
mental states. Data from subj#2.

0.97). The obtained results were statistically different from the chance level
of 0.5 and comparable to the motor imagery-based BCI performance (Guger
et al., 2003; Vasilyev et al., 2017). Only one participant had accuracy lower
than the chance level during TI of the right hand (subj#11).

The example of CSP patterns used for classification in one subject are
shown in Figure 3. For most of the subjects, CSP patterns were localized con-
tralaterally over the central electrodes (Fig. 3). The results obtained showed
that tactile imagery can be successfully decoded using such basic classification
methods as linear discriminant analysis. The classification could be further
improved using artificial neural networks.

CONCLUSION

We found that when human subjects imagine their hands receiving tactile
stimulation their sensorimotor spectral characteristics exhibit consistent
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changes, which could be reliably decoded with a discrete classifier. Based on
these observations, we suggest that motor-imagery BCIs could be enriched by
adding a tactile-imagery component. Therefore, tactile imagery-based BCIs
could be especially useful for neuroprosthetic approaches intended for people
suffering from somatosensory disabilities and phantom-limb pain.
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