Human Interaction and Emerging Technologies (IHIET 2022), Vol. 68, 2022, 502-509 AH FE
https://doi.org/10.54941/ahfe1002770 |nternational

Rapid Interactive Software-Architecture
Design with Split-n-Join Actions

Anthony Savidis'? and Anthony Peris?

TInstitute of Computer Science, FORTH Heraklion, Crete, Greece
2Computer Science Department, University of Crete, Heraklion, Crete, Greece

ABSTRACT

The software architecture design process is an essential part of the software deve-
lopment lifecycle. During the early phases, architects combine creative thinking,
cooperative sessions, exploratory analysis, quick sketching and abstract design aiming
to craft an optimal initial architecture. During this startup stage, tools requiring exhau-
stive information, detailed modelling and elaborate specifications can be tedious and
impractical, even frustrating. Also, due to evolution, continuous refinement, syncing
and maintenance is required, something that should be handled easily, flexibly and
abstractly. In this context, we present an architecture design tool for rapidly and
easily composing and reshaping architecture diagrams. It is based on components
and abstract operations, focusing on quick refinement and exploratory crafting, while
playing repeatedly with split-n-join actions on components.

Keywords: Rapid software-architecture design, Software architecture prototyping, Interactive
software-architecture design environments

INTRODUCTION

Today, in many architecture design tools, commonly relying on UML dia-
grams, the overall process is highly detailed, resulting in time consuming
activities, asking designers to elaborate very early on technical aspects that
are usually finalized much latter in the development lifecycle. Effectively, such
tools are meant to be rapid interactive prototyping laboratories, but serve
mostly as architecture documentation environments. However, because they
require so fine-grained detail, which is transient, volatile and non-final in
the early design phases, they are less preferred for initial experimentation
and analysis. Effectively, it is impractical for architects to spend the requi-
red effort in supplying data for components, specifications and relationships
when those frequently change after the early design phase.

In fact, it is acknowledged that software architectures are “intellectually
graspable” abstractions of complex systems (Bass et al. 2012), with primary
emphasis on concepts such as “components, connectors, and styles” (Shaw
et al. 1996). Based on these remarks, our work focuses on supporting the
very early stages of the architecture design process, putting primary emphasis
on rapid interactive construction, ease-of-use, continuous experimentation,
minimal information, and adoption of common architectural abstractions.

© 2022. Published by AHFE Open Access. All rights reserved. 502

https://doi.org/10.54941/ahfe1002770

Rapid Interactive Software-Architecture Design with Split-n-Join Actions 503

primary design concepts
A

Functional Roles EF! Abstract Functions

\/ \/
[Components]H,}-'[Operations]

i
final architecture elements

Figure 1: The emphasis on functional roles and abstract functions as the primary
design concepts, leading to eventually derived architecture elements.

Basic Notions

Our process reflects two key notions (Figure 1): (i) functional role, mapping
to components and driving the grouping of common operational features
relating to a common and shared role-based responsibility; and (ii) abstract
functions, relating to how the envisioned features may map to concrete
operations of the new system.

Focusing primarily on components and operations, our tool reflects the
exploratory nature of the design process by offering two key actions, namely
splitting and joining components, besides typical creation and removal. This
work is inspired by the quick object-oriented design method of CRC Cards
(Beck & Cunningham, 1989) (Classes, Responsibilities and Collaborators),
part of agile development, by adapting the original notions to fit with the
scale and abstractions of the software architecture domain as Components,
Operations and Connectors (COC). In our tool, the primary requirement
has been the facilitation of rapid exploratory interactive design, with small
effort on behalf of the user, making it a laboratory for testing where related
ideas may be easily instantiated via the tool. Considering that the architecture
structure changes frequently in this process, we identified most common acti-
ons architects perform when revisiting component roles, besides component
insertion and removal:

« Split: applied when a grouped operations, either belong to a component,
or standalone, are identified to combine many different disciplines altoge-
ther that separately deserve representation (i.e. decomposition) as distinct
items;

« Join: performed when a few components are considered as weak or arbi-
trary to stand on the own, while in terms of their functional role they look
as pieces of the same concept, likely requiring merging together under the
same umbrella;

« Connect (Disconnect): links components together with tagged connectors
reflecting well-defined operational synergy between them.

Then, we treat operations as first-class elements of the design process, ena-
bling to associate them directly to components, while freely moving them
across components, or setting them as orphan (standalone) via the following
activities:

504 Savidis and Peris

o Set: attaches an orphan operation to a component;
« Move: reassigns an operation from one component to another;
« Reset: detaches an operation from a component and sets it as orphan.

We discuss how such simple activities are fundamental and capture the
essential aspects in early architecture design tasks, and show examples on the
way we supported them interactively, keeping their delivery simple, quick and
yet sufficient. For instance, component associations or synergies may change
by simply rearranging links with the mouse, while operations are managed
easily by typical drag-n-drop. Additionally, further component decomposi-
tion is supported, for sub-architecture analysis, enabling craft quickly more
detailed processing structures, while their view may be toggled with just a

click.

RELATED WORK

In (Perry & Wolf, 1992), the distinction between three different classes of
architectural elements is made, namely, components, data elements, and con-
necting elements. This original view is very abstract and elegant, focusing on
the conceptual representation, rather than on exhaustive and rigorous speci-
fications. Latter, the explicit representation of data was abandoned since it
could be better modelled as a data-related component. The notion of conce-
ptual integrity is introduced in (Brooks, 1975) to emphasize that software
architectures are visions of how systems behave, clearly separated from their
implementations. In this context, architects are essentially “keepers of the
vision”, making sure that such an architecture vision is preserved and respe-
cted throughout the entire development lifecycle. Existing architecture design
environments generally fall in two categories: (a) detailed specification tools,
requiring the exhaustive modeling of many functional aspects of a system,
sometimes leading to automatic generation of implementation modules; and
(b) rapid design tools, with emphasis on graphic and visual prototyping.
The first category includes model-driven architecture (Kleppe, 2003), an
approach that pushes architects in learning custom notations, sometimes
being very close to programming notations, like Executable UML (Rai-
strick et al., 2004). Design tools like StarUML (https://staruml.io/) and
Astash (https://astah.net/) focus on UML and involve specific implemen-
tation aspects like class diagrams much earlier than what needed. In the
second category, tools like Archi (https://www.archimatetool.com/) and Gra-
phor (https://gaphor.org/) emphasize graphical design with a toolset of visual
architecture elements, but still involve quite detailed representations and
symbolisms, emphasizing the early categorization of architecture elements.
Our critique in such tools is that, many times, the information required is
far more detailed, while the supported actions, even when the emphasis is on
rapid sketching, do not reflect a common process model, but seem almost like
a graphical editor. For instance, in our case, component merging or joining
is a semantic action applying on the components but also on their associated
operations. Similarly, the notion of operations, as general or abstract functi-
ons, initially disengaged of components or functional containers, is not met

https://staruml.io/
https://astah.net/
https://www.archimatetool.com/
https://gaphor.org/

Rapid Interactive Software-Architecture Design with Split-n-Join Actions 505

in other tools, although their notion appears during requirements elicitation
and functional specifications, where planned system features give birth to a
catalogue of general system operations.

DESIGN PROCESS

Our design process aims to be rapid by design, involving no particular custom
symbolisms for components, just plain boxes, leaving designers to represent
semantics following component roles, and optionally within related brief
descriptions. In fact, we consider that many mission-specific symbolisms for
components, implying functional responsibilities, are unnecessary, since they
will disappear in the implementation process and the resulting source code.
For example, assume a component role is handling all user input. Then, in
many design tools, a graphical element denoting input must be used. In our
case we direct architects embody all semantic information in the careful role
description, given if possibly through a component name, thus something like
“user input handler” would do the job. Also, we emphasize that architects
communicate such semantic aspects explicitly to the implementation process,
requesting that such role names are adopted so that the immediate connection
to the architecture remains clear. In Figure 2 we provide an example outlining
a few steps from the architecture design process of a classic platformer game
(Super Mario). As outlined, all design actions are applied directly on either
components or operations, while users are enabled to reconsider earlier deci-
sions via changes easily and frequently. Saving the current state is supported,
besides free undo / redo of every design activity.

The detailed semantic control flow of an architecture design process in our
tool is depicted with two flowcharts, under Figure 3 and Figure 4, regarding
component and operation management respectively. Effectively, architecture
design is completed when the following condition is met: no further action
on components or operations is necessary and every operation is attached to
some component. This is a very simple termination criterion and emphasizes
the simplicity and abstraction of the architecture design process in general,
whose main purpose should be to grasp, outline, integrate and correlate all
the involved functional concepts in an expressively simple and understanda-
ble manner. Anything beyond that entails the danger of bringing too-many
implementation details too-early in the design process. Also, this blending of
abstract elements and relationships allows changes and refinements, during
the implementation, to be conveniently applied. Clearly, in the implementa-
tion phase, new ideas for additional features will put on the table, and overall
a better understanding of the system under development will be instantiated.
This may lead to necessary corrections on the original architectural picture,
something that is straightforward and minimal if the design tool expresses
only the abstract elements and avoids lower-level details.

COMPONENTS AND OPERATIONS

During the interactive architecture design process the primary manipulated
elements are components. However, the existence of such components is

506 Savidis and Peris

1. Game component is inserted it 2. Render() operation inserted
- : Name:]
Fe Edt pEESEIEN Cre |1 Fle Edt Components Operations
Game i
i
Description i
ol | s
e L [Super Mairo classic platformer remake ’]: = A
D! . | Create a new operation
i I
N
@ Render() <Game> Operations "™
Render()
O Current @ Al
0 RenderSprites() __ 00000 Description
o RenderGUI() " [@ Render) [Hain game rendering| operation]
s y
3. More operations created and "
attached to Game component

5. More components added

ﬂ.u
3olE > - | Em=—

C-pl]t operations to a new component 9 Hetderaretaiondares

i) RenderSprites() <Renderer> | Sorile beariager || Refosr :|
4. Render operations split Renderer © RendercUi) <R
as Renderer component Collision Checker & Input Manager
Al Manager i Anar'ﬂanonManagerE

Input Manager *

' 7
Al Manager * Animation Manager *

Link two selected components.

6. Components linked
together with tags used here
to indicate call sequencing

Figure 2: Overview of the tool facilities involved within a brief process for quick archite-
cture creation and refinement; steps are numbered, arrows also indicate sequencing.

Delete
Component

Join
Components

Insert
Architecture

Process
? Operations
. ’ /

Figure 3: Components design flowchart - ‘insert architecture’ concerns the detailed
design of a role’s sub-architecture, implying another layer of architecture component
analysis.

only justified by their responsibility to deliver a well-defined set of necessary
system operations, the latter logically grouped altogether under the functio-
nal role of their host component. This interlinking is denoted under Figure 5

Rapid Interactive Software-Architecture Design with Split-n-Join Actions 507

Delete
Operation

Link to
Component

Unlink from
Component

Move to
Component

Process
Components

Figure 4: Operations design flowchart — operations are added in a separate catalo-
gue as part of functional requirements analysis and initially may not be associated to
components.

s

E'Functfonaf role: an integral set of?} i' Attached in the same component
i correlated responsibilitiesin the i when they exclusively contribute
i actual functioning of a system | I‘\ to its respective functional role

- - - -
N, gt N

=

R

L/

Components

) Operations]

Figure 5: Bridging components with operations in our architecture design process.

showing that the notion of role is fundamental, around which the driving of
our architecture design process is done.

An example showing the quick interlay of component and operation edi-
ting in our tool is outlined under Figure 6, in the context of web application
architectures. In particular, a few general components are firstly introduced,
and the application logic component is further analyzed via the subdivision
option. This results in identifying a few sub-components to handle Stati-
stics, Users, Data Forms and the Q& A Catalogue, followed by a preliminary
analysis of some specific operations relating to the Statistics component, that
are directly assigned to it.

Besides starting the architecture design process always from components,
as it is common in most design tools, sometimes the requirements analysis
phase identifies primary operations that can also serve as the starting point of
architecture analysis. Now, this implies that the initial design activities should
be operation-driven, and as such should allow handle them without even
committing to a single component. This is a feature supported in our tool,
enabling to start an operation-centric activity, and then forward in a stepwise
fashion to group them into components via the split operation. An example is
depicted under Figure 7, where, as part of an IDE (Integrated Development

508 Savidis and Peris

Name: ‘W] Name (=) Neme ';ﬁ-
Web Application) User Interface (Frontend)) Data Access (Queries) [
Description Description Description
[Interactive ata-oriented web application I | Runs on client (browser)| | i Access MysQL 08 (for anything...) l
v
(5] B (™ Shavee -
Data (MySQL) oo i | > - User Interface (Frontend) &
& i
Description Description i T
| i :
I e st o0 it 111 sales 1I l Exeruihiag tde sy dnts and logic vestded o1] ..>| Application Logic ‘
7 i wab Applicat
Pl =
(5 s | 5 : Tu——
| = Statistics . Users .
€ sortwithParamete:

0 CashQueryResults

D DatauysaL) G
o RetrieveCahedRes H :
Data Forms = Q&A Catalogue =

Figure 6: Crafting web-application architecture and sub-dividing further the internal
architecture of the application logic component.

:i;l 1. Many operations are ' 2. Operations split into groups (here shown for Compiler)
inserted, initially orphan : = i i
L Yy orp ! = CompileSource() Compiler e Campllesourced) scompliers
CompileSource | tAlICompileE Col
@ P 0 i E® GetAllCompileErrors() o e e stoml
i i GetAllCompileWarnings() <Co
€@ GetaiCompileErors() | (@ cewicompilewarnings() | ;- LS
} . Lo Initial
@ GetAllCompileWarnings() © Compiesaurca <Gompiers Subarchitecture <Debugger>
= Compiler £ £
€D OpenSourceFile() @ GeiCompileErors() <Compiler> Debugger
€ CloseSourceFile() Editor € GetaiCompileWamings() <Compiler> Memory Inspector
@ BuikdE 2bi @ o eFile() <Editor= 4. Debugger
uildExecutable() Builder €} CloseSourceFile() <Editor> ek Wichos is added
€ RunExecutable() (5]) <Buider> and its
Breakpoints Holder architecture
e DebugExecutable() Projects €} RunExecutable() <Builder> S riinihy
€D DebugExecutable() <Builder> Trace Commander e
€ AddsourceToProject() 3. More : ; specialized
) components @ AddSoureToProject) <Projects> Calistack Viewer
e RemoveSourceFromProject() after splitting) RemoveSourceFromProject() <Projects=

Figure 7: Initiating a design process based on key operations and then incrementally
deriving detailed components by splitting the operations into separate groups.

Architecture), a free list of operation emerges, subsequently organized via
splitting into components. Following, the Debugger component emerges and
its sub-architecture is further analyzed via the subdivision feature. As shown
at the bottom right of Figure 7, its internal components are also displayed;
this is interactively configurable per component, meaning viewing the sub-
architecture (if any) of components can be turned on or off.

CONCLUSION

Software architecture design is a critical and very demanding task that is
carried out at the early phases of the software development lifecycle. Tool
support for this process is known to be offered for as long as directives,
guidelines and patterns exist, while emphasis is mainly put on precision,
detail, elaboration and coverage of every single functional aspect that engi-
neers may foresee in an analytic fashion. Unfortunately, most tools invested
on providing numerous features and parametrization possibilities, turning
architecture design to an exhaustive and even daunting task, introducing
unnecessary forward links to implementation details.

Rapid Interactive Software-Architecture Design with Split-n-Join Actions 509

However, the essence of architecture design is abstraction and conceptua-
lization, or the less-is-more principle, enabling to dismiss all details that lay
outside the high-level semantics and the vision of an abstract operational stru-
cture. Along these lines, we focused primarily on the task itself, supporting
only those activities that commonly recur in the context of an exploratory
architecture design process. We dropped any features related to implemen-
tation notations, and all visual symbolisms that could be simply represented
with appropriate component or operation naming. Although our system is
still in a prototype version, we quickly observed how rapid it is for sof-
tware architects to capture an initial architecture and incrementally apply
refinements as part of the fundamentally fluid design process.

We believe that more focus is needed on developing instruments exploiting
the creative, exploratory and playful nature of the overall architecture design
process, by offering facilities that involve small effort and little commitment
in interactive design, so that anything can be conveniently and with minimal
overhead altered, until eventually the design itself is considered as optimal
and complete.

REFERENCES

Bass, L., Clements, P., Kazman, R. (2012). Software Architecture in Practice, Third
Edition. Boston: Addison-Wesley.

Beck, K, Cunningham, W. (1989). A laboratory for teaching object oriented thin-
king. In Proceedings of OOPSLA ’89 Conference proceedings on Object-oriented
programming systems, languages and applications, ACM, pp 1-6.

Brooks, FE. (1975). The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley.

Kleppe, A. (2003). MDA Explained, The Model Driven Architecture: Practice and
Promise. Addison-Wesley

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.
Communications of the ACM, Volume 15, Issue 12 (Dec. 1972), pp. 1053-1058.

Perry, D., Wolf, A. (1992). Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes. Volume 17, Issue 4 (Oct. 1992), pp 40-52

Raistrick, C., Francis, P., Wright, J., Carter, C., Wilkie, I. (2004). Model Driven
Architecture with Executable UML. Cambridge University Press.

Shaw, M., Garlan, D. (1996). Software architecture - perspectives on an emerging
discipline. Prentice Hall.

Soni, D., Nord, R., Hofmeister, C. (1995). Software architecture in industrial appli-
cations. In ICSE °95, proceedings of the 17th international conference on Software
engineering (April 1995), pp 196-207.

	Rapid Interactive Software-Architecture Design with Split-n-Join Actions
	INTRODUCTION
	Basic Notions

	RELATED WORK
	DESIGN PROCESS
	COMPONENTS AND OPERATIONS
	CONCLUSION

