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ABSTRACT

In shared traffic spaces like intersections cooperative behavior can be crucial for safe
and comfortable interactions of traffic participants. In mixed urban traffic, VRUs like
cyclists need special attention in interactions with autonomous vehicles. The goal of
this work is to provide the automated vehicle with trajectory information of the cyclist,
to be able to take the behavioral intention of the cyclist into account and make a coo-
perative reaction possible. This is achieved through a trajectory forecast of the cyclist,
which allows for the possibility to estimate his course of movement within a limi-
ted time frame. Multiple algorithms for a trajectory forecast have been implemented,
compared and evaluated. The results of this research work showed that a CNN can be
used to integrate data of various types in order to accomplish a trajectory forecast for
cyclists.
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MOTIVATION

In highly automated traffic not only the communication and interaction
between vehicles among themselves, but also with vulnerable road users
(VRU) like pedestrians and cyclists is crucial for the safety and comfort of
all traffic participants (Ackermann, Trommler, & Krems, 2021). While con-
nected vehicles can use technical solutions like ITS-G5 and ETSI standardized
messages like cooperative awareness (CAM) (ITS – Vehicular Communicati-
ons) or maneuver coordination message (MCM) (ITS – Vehicular Communi-
cations) to communicate with each other the possibilities to get information
about the VRU’s behavior are limited. One approach is to utilize the onbo-
ard sensors of an automated car to detect VRUs. Though this might not be
possible if a VRU is concealed by buildings in narrow intersections, trucks or
other cars. Instead, kinematic data can be acquired directly from the bicycle
with mobile sensors like GPS, accelerometers or gyroscopes that are already
included in most smartphones.

This paper proposes an algorithm to combine different types of data in
highly connected and automated traffic to achieve an accurate trajectory fore-
cast for cyclists. The implemented model utilizes kinematic data alongside
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infrastructural information to estimate the trajectory of cyclists as a behavi-
oral indicator that can later be used by automated vehicles to accomplish a
safe and comfortable traffic flow.

RELATED WORK

In the research field of trajectory predictions two general types of approaches
can be found, physical models andmachine learning models (Zernetsch, Koh-
nen, Goldhammer, Doll, & Sick) as well as combinations of these variants.
While the first mentioned approach focuses on the development of suita-
ble movement models for bicycles, the latter is in most cases utilizing neural
networks to approximate or plan a trajectory. There is still only little resea-
rch on trajectory prediction for bicycles, but a large amount for cars. Because
of this it is sensible to make use of the available knowledge and transfer the
algorithms for car trajectory planning and forecasting onto cyclists. In this
sense Polack et al. (Polack, Altche, d’Andrea-Novel, & La Fortelle) proposed
and compared a kinematic model for bicycles based on a vehicle’s movement
model. In comparison though to a neural network made for cyclists’ tra-
jectory prediction these physical approaches usually yield a lower accuracy
(Zernetsch, Kohnen, Goldhammer, Doll, & Sick). The biggest advantage of
using a machine learning algorithm in this use case is the fact that it can incor-
porate data of all types to improve the estimation or planning of a trajectory.
In an interaction situation between cyclists and other vehicles the trajectory
of the cyclist is not only influenced by the kinematic parameter of the bicycle
but also by the behavior of surrounding road users. In the work of Huang
(Huang) and Ju et al. (Ju, Wang, Long, Zhang, & Chang) a neural network-
based algorithm was proposed, which is interaction-aware and capable of
predicting conflict avoidance behavior in traffic. Another influencing factor
of the cyclists’ trajectory is the surrounding infrastructure itself. How a cyclist
acts at an intersection can for example depend on the layout of road borders
and lane markings, but also on the overall space that each traffic attendant
has available for possible maneuvers. Sample situations are investigated in
(Ackermann, Trommler, & Krems, 2021). “Djuric et al. (Djuric, et al.) sho-
wed an approach of including rasterized maps of intersections into a motion
prediction model.

In this paper a neural network will be implemented, which combines and
builds up on the aforementioned approaches. The proposed algorithm is not
only using the bicycles kinematics, but will be able to predict cyclists’ traje-
ctories with awareness of surrounding vehicles movements and incorporate
infrastructural data through the use of area maps.

ALGORITHM

Model Implementaion

As mentioned before the goal of this work is to implement a trajectory pre-
diction algorithm for cyclists in cooperative traffic scenarios, which means
calculating a time discrete forecast of the future position and velocity of
the cyclist. This is achieved by utilizing neural networks (NN), an approach
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that can handle most different types of input data. Since there are multiple
variations of NNs, three models have been comparatively implemented and
investigated for their possibilities, strengths and weaknesses. The concept
of the used architectures, a multi-layer perceptron (MLP), a long-short-
term-memory-NN (LSTM) and a convoluted neural network (CNN) will be
described below.

The MLP (Kiyoshi Kawaguchi, 2000) is the most simplistic variant of the
mentioned NNs and suited to test and validate the general training algorithm
as well as generating a baseline accuracy for the trajectory forecasts.

The Input of theMLP consists of a time series of the cyclists’ position coor-
dinates. In advance all available data has to be split in sequences of consistent
temporal length. The optimal length of those sequences was determined expe-
rimentally and is part of the evaluation (see Ch. Evaluation). The output of
themodel aremultiple 2D-position coordinates of the cyclist in 0.5 s intervals.

The model architecture itself consist of one input layer, three fully con-
nected layers (dense layers) and one output layer with a relu-function as
activation function for the dense layers. Despite its simple structure the MLP
is already capable of predicting the future positions of a cyclist, although with
a limited accuracy.

Using a MLP to process time series data, the data must be given simul-
taneously, in contrary the LSTM was especially developed by Hochreiter &
Schmidhuber (Hochreiter & Schmidhuber, 1997) to address features in time
series data. The aforementioned MLP approach also only considered the
position of the cyclist and the movement of all other surrounding vehicles
was ignored. This way the interaction aspect of the traffic scenario cannot
be incorporated. To allow an interaction-aware trajectory forecast a specific
LSTMwas used, which is capable of including other road users within a given
radius into the calculation. As a basis the TrajNet++ framework (Kothari,
Kreiss, & Alahi) was used. A LSTM that was originally designed to predict
movements of pedestrians in crowded areas and that focuses on the coopera-
tion and interaction of the individual attendants. This model was adapted for
the given use case. The classification of possible interactions, which is based
on parameters like the distance between road users, the movement direction
and the field of view have been adjusted to match the higher possible velo-
city and maneuver spaces of cyclists and cars at an intersection. The input of
the model includes time series of position coordinates of the bicycle and all
possibly interacting vehicles in its surrounding. The output has been kept the
same as in the MLP, the predicted position coordinates of the cyclist.

The evaluation and tests of the LSTM showed the limits of such a model in
this use case. Tight corners and fast turning of the cyclist cannot be estimated
accurately enough. The reason for that is the high mobility of a bicycle, which
allows very dynamic and sudden maneuvers. To increase the prediction accu-
racy in those situations infrastructural data should be incorporated in the
model’s input. Knowledge about street borders and lane markings can help
limiting the cyclist’s possible space of movement. The georeferenced infrastru-
cture data is extracted from publicly available maps. A CNN is well suited for
this type of input data, as it can process the maps directly as images (Sandler,
Howard, Zhu, Zhmoginov, & Chen).
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Between the described model architectures, the CNN offers the most pos-
sibilities of integrating various data types. The input is scalable and could
in future work be extended by additional parameters. The pre-processing
and fusion of all given data is a central part of training such a model and is
described in more detail below.

Datasets

For the training of the described models three public datasets were used. The
“ApolloScape Trajectories” dataset (Ma, et al., 2019), the “Lankershim bou-
levard dataset” from the NGSIM project (Coifman & Li, 2017) and the InD
dataset (Bock, et al.). All of them include recordings of urban intersections
featuring cars, cyclists and pedestrians. The datasets contain position coordi-
nates, velocity, heading and corresponding labels of all road users. The InD
Dataset also includes drone images of all recorded scenarios.

The large-scale ApolloScape dataset was used to design and validate a
workflow for extracting, structuring and pre-processing data, as well as a
first training. The NGSIM dataset would later be used to develop a method
to incorporate georeferenced infrastructural data into the training procedure.
The InD dataset has the most recordings of cyclists’ interactions and was used
for statistical and exemplary evaluation.

DATA AUGMENTATION

The advantage of a CNN is the capability of processing images fast. In this
use case these are satellite, drone images or abstract maps of intersections.
Furthermore, the position coordinates and kinematic data of the cyclists and
all surrounding vehicles can be included. For this an algorithm is needed to
merge those data types and provide it to the CNN as one complete image.
The process of this data augmentation will be outlined step by step.

First the cyclist’s course of position coordinates in the past few seconds is
drawn into an image true to scale (see fig. 1 left). The size of the image must
be consistent and depends on the chosen input layer of the CNN.

The previous positions of all surrounding vehicles are also added to the
image (see fig. 1 right). The chosen grayscale value can distinctively separate
the types of vehicles from each other.

The kinematic data (here velocity and heading) of the road users are tran-
sformed to a scale of 0 - 255 and can this way be added to the color channels
of the image. For this the corresponding position coordinates will be displa-
yed in the calculated color values. The scaling could result in quantization
errors, so the scaling must be adapted to the respective situation. Even if this
representation is hardly interpretable for a human, the image now contains
all interesting vehicle data and can be read by a CNN model.

The last step is the incorporation of georeferenced infrastructural data into
the created image. The basis for this can be birds eye view recordings of an
intersection (see fig. 2 left) or satellite images. Since not all image information
is relevant here and the color channels were already used to encode vehicle
data, a pre-processing of the recording is necessary. Firstly, the image will be
transformed to grey-scale and then an edge detection is done (see fig. 2 right).
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Figure 1: Cyclist’s position (left), cyclist’s and car’s position with kinematic data
encoded as color (right) over 3 seconds.

Figure 2: Georeferenced drone image from InD dataset (Bock, et al.) (left), edge
detection image (right).

This way only relevant features of the street, like the marking and borders
will be highlighted. The resulting image will now be merged with the created
image of the previous step (see fig. 3). This is the final input image for the
CNN. The process will be repeated for the following time steps to create an
extensive training data set of multiple thousand images from the given traffic
monitoring data.

EVALUATION

Error Metric

To assess the prediction accuracy as well as the performance of the three
implemented models (see Ch. Algorithm) a statistic evaluation has been done.
For that an established error metric has been used (Twomey, 1997), which
allows comparing the models with each other and also with similar already
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Figure 3: Complete input image: with cyclist’s trajectory in the middle (red) and car’s
trajectory below (green), both fitted on the map.

existing models. With the following formula (see fig. 1) the average displace-
ment error (short ADE) can be calculated, a metric to show the deviation of
the predicted cyclists’ trajectories from their actual driving path.

dx =
n∑
i=1

(x̂i − x̂i)2 (1)

dy =
n∑
i=1

(ŷi − ŷi)2 (2)

ADE =
√
dx+ dy/2n (3)

To determine the ADE, the deviation of a predicted point from the ground
truth is calculated in lateral (dx) as well as longitudinal (dy) direction. Both
values themselves can already give insight of the model’s accuracy in specific
situations. On the one hand predictions of straight driving can be evalua-
ted through the longitudinal error and turning through the lateral error. The
combined deviation of the forecasted driving path is then calculated by the
mean of those two values.

Evaluation of Different Input Data

As test data recordings of an intersection has been used, which were comple-
tely excluded from the training. This way the scenario is completely new to
the models and allows for a validation of the transferability of the algorithm.

The main focus of the evaluation is the comparison of different input data
for a trajectory forecast and alongside that the comparison of the three used
neural network architectures – the MLP, LSTM and CNN.

In this table (see table 1) the ADE of the predicted trajectories for the cycli-
sts are listed. To allow for comparability a constant prediction time frame of
3 seconds has been chosen for all models.
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Table 1. Results of different neural network architectures.

MLP LSTM CNN

ADE [m] 1.9 1.24 0.84
dx [m] 1.16 0.73 0.45
dy [m] 2.64 1.75 1.23

Table 2. Comparison of CNN results with and without infrastructure information.

CNN with infrastructural data CNN without infrastructural data

ADE [m] 0.84 1.08
dx [m] 0.45 0.59
dy [m] 1.23 1.57

The MLP has the biggest average displacement error here of 1.9 m. Given
the minimalistic model structure and the sparse input (only cyclists position
coordinates) there was no high prediction accuracy to be expected here. How-
ever, the longitudinal error (dx) of the MLP shows, that a forecast of straight
movements is already possible with this rather simple algorithm.

The LSTM reached a significantly lower average error of 1.24 m. This is
for once due to the in general better suitability of the LSTM for time series
predictions but also through the incorporation of trajectories of all other
vehicles in the surroundings of the cyclist (see Ch. Algorithm). This allows
the LSTM to learn interaction behavior between the road users and with that
to improve accuracy of the trajectory forecasts.

The best performing model in this comparison is the CNN with an ADE
of 0.84 m. This CNN does not only yield the advantage of the LSTM to
consider other vehicles in the prediction, but it also includes infrastructural
data of the area through the model’s input.

To further prove the positive influence of the georeferenced infrastructural
data on the trajectory forecasts, a CNN has been trained, which does specifi-
cally not use any this data as input. All other model and training parameters
have been kept constant.

The ADE of the compared model variations listed above (see table 2)
shows a higher accuracy for the CNN that uses infrastructural data. This
proves that the inclusion of this information can enhance predicted cyclists’
trajectories, which can especially be seen in the lateral error of the prediction
(dy). That means the turning of the cyclist can be approximated better with
the described CNN algorithm.

Evaluation of Prediction Time Horizons

The accuracy of trajectory forecasts highly depends on the predefined time
frame that is supposed to be predicted. The correct value must be chosen
with regards to the use case and the desired minimum accuracy. As mentio-
ned before all shown results have been done using a prediction time frame
of 3 seconds. To evaluate the performance of the CNN with different time
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Figure 4: ADE in relation to the prediction time.

horizons, 6 variations of the model have been trained using values from 1
seconds to 6 seconds respectively.

Comparing the ADE of the trained models with different prediction time
horizons shows, that the error of the trajectory forecasts goes up exponen-
tially with increasing time frames (see Fig. 4). While the models reach an
acceptable accuracy for predicting cyclists’ trajectories for up to 4 seconds, it
is assumed the variants above 4 seconds produce an error that is too high to
be used in a practical application.

In future work possibilities of increasing the forecast time frame will be
further investigated. The biggest advantage of the used neural network is the
fact that additional types of data, like for example behavioral or psycholo-
gical parameters can be incorporated without having to create mathematical
descriptions or models in order to allow for an even more precise and
long-term trajectory prediction.

CONCLUSION

Neural networks can directly take the autonomous vehicle’s trajectory into
account to forecast a collision free trajectory of cyclists in interaction situa-
tions. This paper showed especially CNN as a potent algorithm for combi-
ning infrastructural data alongside kinematic data. The results showed that
infrastructural information increase the prediction accuracy significantly. In
upcoming works, the implemented model will be tested in real time applicati-
ons and in varying traffic scenarios to further investigate its adaptability and
general performance.
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