
Intelligent Human Systems Integration (IHSI 2023), Vol. 69, 2023, 896–904

https://doi.org/10.54941/ahfe1002915

Towards Knowledge-Based Generation
of Synthetic Data by Taxonomizing
Expert Knowledge in Production
Oliver Petrovic, David Leander Dias Duarte, Simon Storms,
and Werner Herfs

Laboratory for Machine Tools WZL, RWTH Aachen University, 52074 Aachen, Germany

ABSTRACT

Synthetic data is a promising approach for industrial computer vision because it can
enable highly autonomous production processes. However, this potential is not ful-
filled by current software for synthetic data generation, which usually requires a
programmer to create new datasets. To overcome this, we are proposing a frame-
work for more autonomous synthetic data generation, formalizing user roles relevant
to such systems. A central aspect of our framework is that domain experts can easily
influence the generation of synthetic data by entering knowledge via user interfaces.
To get a better idea of what such knowledge could be, we have systematically collected
examples of knowledge types for synthetic data generation in production and combi-
ned them into a taxonomy with almost 300 nodes. Using this taxonomy as the basis
for analyses, we derive six implications for our framework, such as knowledge being
not only passed on by domain experts but also by the designer of the user interfaces
and generation algorithms. We plan to incorporate these findings to further refine and
implement our framework in future research.

Keywords: Synthetic data generation, Expert knowledge, Machine learning, Computer vision,
Sim2Real transfer, production, Industry 4.0

INTRODUCTION

While machine learning (ML) has enabled many advances in industrial com-
puter vision (Zhou et al. 2022), modern ML algorithms often require big
datasets, which are expensive to create. The reason for these high costs is that
in computer vision, datasets are usually created manually by taking photos
with a camera and then labeling one after another with a computer program.
A more cost-efficient approach is the use of synthetic data, which can be
generated significantly quicker in a computer simulation.

Synthetic data is especially promising in the context of production because
3D models, which are required for the simulations, often already exist in the
form of CAD models (Eversberg and Lambrecht 2021). Furthermore, synth-
etic data could enable highly autonomous production processes because new
datasets can be automatically generated to retrain ML models when a produ-
ction task changes (Alexopoulos et al. 2020). However, the use of synthetic
data in production has so far been hindered by two aspects. First, ML models

© 2023. Published by AHFE Open Access. All rights reserved. 896

https://doi.org/10.54941/ahfe1002915


Towards Knowledge-Based Generation of Synthetic Data 897

trained on it often underperform when applied in the real world. There are
several methods that try to overcome this “sim2real gap”. For instance, a
process expert’s knowledge about a particular task can be used to build more
realistic simulations, which is the approach we’re focusing on in this paper.
Secondly, current synthetic data APIs often require programming to create
new datasets (e.g., Denninger et al. 2019; Frolov et al. 2022; Morrical et al.
2021), which limits the potential for autonomy.

To increase the usability of synthetic data for production contexts, we’re
working on a new software system that streamlines the integration of expert
knowledge in the generation process. As part of this work, we have developed
a novel, human-centered framework, which we’re presenting in this paper.
This framework introduces three user roles and defines their tasks within the
software system.

Because we want our system to be expandable to a large variety of pro-
duction tasks, it should also support a broad range of knowledge types.
However, to the best of our knowledge, there currently exists no overview
of knowledge types for synthetic data generation in production. Thus, to get
a better idea of what our system needs to be capable of, we have created such
an overview in the form of a taxonomy. This taxonomy is the result of col-
lecting and unifying many examples of expert knowledge and includes over
290 nodes to give a broad overview of this field. Following the presentation
of our taxonomy, in the last part of this paper we’re using it to derive pra-
ctical implications for our framework and synthetic data software systems in
general. These implications concern the roles within our framework and the
way that data can be stored in the system.

A FRAMEWORK FOR KNOWLEDGE-BASED SYNTHETIC DATA
GENERATION

The aim of the software system that we’re working on is to simplify the gene-
ration of synthetic data in production contexts. Expert knowledge plays an
important part in our system. On the one hand, this knowledge defines the
task itself, for instance which objects should be recognized. On the other
hand, the knowledge is also used to create more realistic synthetic data to
help overcome the sim2real gap. A focus of our system is on how this kno-
wledge is entered into it. While current synthetic data APIs often require
programming, our system uncouples programming from the input of process
knowledge. This way, process experts from many fields of production can
directly enter their knowledge without needing specific programming exper-
tise. A last key characteristic of our system is that it is being designed as a
general system that can be used for a broad range of tasks. To achieve this, it
should be extendable with modular add-ons that add features for additional
tasks.

As a first step towards the development of the system, we have created a
framework that introduces user roles relevant for such a system and forma-
lizes the ways that they interact with it. Overall, as can be seen in Figure 1,
our framework includes three user roles, which are described in the following
paragraphs.



898 Petrovic et al.

Figure 1: Overview of our framework for knowledge-based generation of synthetic
data. The framework introduces the three user roles “End User”, “Data Scientist” and
“ML System” that software systems following the framework would interact with.

End Users are human users that hold knowledge about the production
process. We want to enable these users to directly enter their knowledge into
the system without requiring a programmer. To achieve this, form-based user
interfaces are used in which knowledge can be easily entered. A broad range
of people have knowledge relevant for production processes and could thus
fill this role. Specifically, in the context of an industry 4.0 process, “smarter
operators” are expected to become process experts with sufficient technical
training for such tasks (Margherita and Bua 2021).

Data Scientists are also human users. Their task is to create the forms in
which End Users enter their knowledge and the generation algorithms that
determine how the entered knowledge is used to generate synthetic data. To
make sound decisions for these tasks, the Data Scientist role needs to work
out requirements for a project with a process expert. Once the Data Scientist
is finished, End Users can use the created forms on their own without further
help from the Data Scientist. Data Scientists need programming skills to fulfill
their tasks. Not only people with the job title “data scientist” can fulfill this
role, but many types of engineers.

The last role in our framework is the Machine Learning System. This role
is not a human role but an external software system that controls ML pro-
cesses and uses our software as one of several modules for their tasks. Due
to this relationship, our system only needs to focus on generating synthetic
data, while all other ML-related tasks, such as augmentation or inference,
are outside of its system boundaries. In our framework, the ML System trig-
gers the generation of synthetic data and receives the generated dataset at the
end of this process. When triggering the generation process, the ML System
can also send parameters, which is crucial for highly autonomous production
processes. For example, consider robots handling parts based on a computer
vision algorithm. When a new production process with a never-before-seen



Towards Knowledge-Based Generation of Synthetic Data 899

part has to be implemented, the ML System could send the CAD model from
this task as a parameter to our system, which would generate a synthetic
dataset for it. This dataset could then be used by a different module of the
ML System to retrain MLmodels. Finally, these models could be deployed on
the robots’ controls, which would then automatically have learned to handle
the new part without any human intervention. Furthermore, parameters sent
by the ML System could also be used for more realistic simulations, e.g., by
containing information about the current factory environment collected via
sensors. Because the parameters could also come from somebody who saved
them in a previous process step (e.g., a constructor), the ML System may also
be seen as a pipeline inducing knowledge from other process experts who are
unaware of their relationship to the synthetic data system.

METHODOLOGY

To get a better idea of what our system needs to be capable of and what kinds
of knowledge the form-based interfaces might need to support, we wanted
to concretize the term expert knowledge. To do this, we have systemati-
cally created a taxonomy of knowledge types for synthetic data generation in
production. First, we have collected examples of knowledge types from seve-
ral sources, including internal work, research papers concerning industrial
computer vision tasks, and by examining a software system for rendering
synthetic data. Each source offered a unique perspective. For instance, the
papers yielded more practically relevant examples, such as common object
arrangements, whereas the software system led to technical examples, like
rendering attributes that define how a material looks. After this collection
phase, we combined all examples in a single list and unified them, e.g., by
choosing consistent terms. Finally, we attempted to find a unifying structure
for all examples by clustering them into logical groups.

TAXONOMY OF KNOWLEDGE TYPES FOR SYNTHETIC DATA
GENERATION

The result of the described approach is a taxonomy with 298 nodes that are
structured in 9 levels. Our taxonomy covers a wide variety of topics, such as
scene arrangements, light properties, label types, and many more. The aim
of our taxonomy is to give an overview of the many types of knowledge that
can be utilized in the generation of synthetic data. Figure 2 shows the first
four levels of it. The entirety of our taxonomy can be found online as a spre-
adsheet and visualized as a big figure: https://zenodo.org/record/7270630. In
the following, we’ll describe a few key aspects of our taxonomy.

At the second level, our taxonomy is divided into two branches. “Model-
ling Reality” encompasses expert knowledge about the real scene to be
simulated, e.g., its physical appearance or what number of objects in it are
probable. “Settings”, on the other hand, includes expert knowledge that can-
not be deduced from how the scene looks but are decisions made for other
reasons. For instance, such decisions are the rendering method, the number of



900 Petrovic et al.

Figure 2: The first four levels of our taxonomy of knowledge types for synthetic data
generation in production.

images to generate, and whether to employ unrealistic randomization meth-
ods to make ML models trained on the data more robust. They may still
influence how the simulation looks but cannot be derived by looking at a
real scene.

Within the “Modelling Reality”branch of our taxonomy, the next division
is into “Core Elements” and “Extended Tools”. “Core Elements”, such as
“Objects”, “Environment”and “Illumination”, are relevant to most projects.
“Extended Tools”, on the other hand, are entire categories only useful for
specific contexts, like for “Defect Detection” tasks or rendering “Humans”
in a scene.

One pattern found at various places in our taxonomy is a division into
“Properties” and “Selection Method” branches. “Properties” include all the
attributes that can be modelled for a specific parent category, like “Rough-
ness”, “Sheen” and “Transmission” if the parent category is “Material”. The
other branch, “Selection Method”, specifies how these properties are set by
an expert. For instance, an expert could adjust a material by directly setting
the value for many rendering properties. However, this would be a difficult
task because an expert on a metal processing application probably wouldn’t
know what combinations of rendering properties yield a realistic metal look.
Therefore, a potentially more fitting selection method might be an interface
offering only a few predefined categories, out of which the expert selects a
fitting one. As shown in Figure 3, in the context of “Material” such catego-
ries could be “Plastic”, “Wood” and “Steel”. The values for the rendering
properties would then automatically be set in the background according to
the chosen category. Beyond these two examples, more selection methods are
conceivable.

One last thing to note about our taxonomy is that it displays at parts dif-
ferent kinds of relationships. There are generalization relationships, like a
“Light Source” being either a “Dome Light” or a “Mesh Light”, but never
both. Then there are attribute relationships, like a “Sky” having an “Atmo-
sphere Thickness” argument that determines its look. And there are category
relationships, which are a special form of attributes, like the division into
“Environment”, “Object”, “Illumination” and “Camera” knowledge types
in the fourth layer.



Towards Knowledge-Based Generation of Synthetic Data 901

Figure 3: Top: Cutout of our taxonomy with “Properties” in one branch and “Selection
Methods” defining how those properties are set by an End User in the other. Bottom:
Exemplary interfaces for the two “Selection Methods”. When a category in (B) is sele-
cted, the properties from (A) would still be set, but automatically in the background
with predefined values yielding a realistic look.

IMPLICATIONS FOR OUR FRAMEWORK

Our aim in creating the taxonomy was to better understand what our softw-
are system needs to be capable of. To do this, we have used the taxonomy
as the basis for analyses. For instance, we looked at where in the taxonomy
similar data types can be found, and we tried to answer which of the kno-
wledge types in the taxonomy could be entered by which of the three user
roles of our framework. These analyses have yielded six implications for our
software system that we found especially relevant.

1.The Data Scientist role also enters own expert knowledge that influences
the generation of the synthetic data. As was seen in Figure 3, the design of
the form, in which the End User enters their knowledge, determines what can
be entered at all. For instance, whether there are sliders or more simple-to-
understand classes, and if the latter, then which classes there are and which
values they set in the background. In our framework, the Data Scientist role
is responsible for creating the forms. Thus, we deduce that the Data Scientist
is also entering knowledge when doing this preselection of what the form
looks like. This has two consequences. First, if one wants to record what
knowledge led to the generation of a synthetic dataset, then beyond looking
at what the End User entered, one also has to take into account the knowledge
entered implicitly by the Data Scientist. Secondly, this deduction underscores
the importance of the Data Scientist working together with a process expert
in the requirements engineering of a new interface.

2. The task of the End User can be simplified by focusing on modelling
the real world. At the top, our taxonomy is divided into “Modelling Rea-
lity” and “Settings”. While most End Users could enter “Modelling Reality”



902 Petrovic et al.

knowledge types, only End Users with ML knowledge can enter “Settings”
types. We thus think that it is in most cases easier if the task for the End
User is limited to modelling reality. For instance, instead of explaining that
an unrealistically high variance might improve the performance of synthe-
tic data (cf. domain randomization, Tobin et al. 2017), a form should only
ask the End User to enter realistic values. If the Data Scientist wants to use
domain randomization, then they themselves could add additional variance
on top of the End User’s values as part of their generation algorithm.

3. Software systems don’t need to differentiate between knowledge coming
from an End User or from the ML System.When trying to answer for a few
of the knowledge types in our taxonomy which user role could enter them,
we found that when one could be entered by End Users, it usually could also
come as a parameter from the ML System. This makes sense because the ML
System can induce expert knowledge that it received in previous steps of the
production process.

4. Some knowledge types are only relevant for a user-friendly experience.
For instance, a rotation can be saved as a Euler rotation or, more visually,
as being defined by the center of the object to rotate and a second point
to which it should be orientated. One could transform the latter to a Euler
rotation so that the generation algorithm only needs to support one data
type. However, the points would still need to be saved for a friendly user
experience. The reason for this is that if a user wants to edit their input later
on, they again want the simple representation that they used when entering
it (e.g., the two points). A software system could differentiate between data
used for the rendering process and data only used for user-friendly forms to
get more focused data structures for both.

5. Some knowledge types can have different representations. For insta-
nce, for color values there are the two equal representations of RGB or
HSV values. A data structure could realize this differentiation via inheritance
schemes with general parent classes and more specific child classes.

6. Some knowledge types can be found at multiple places, such as a posi-
tion. A unified structure for these types can save effort. Sometimes it might
even be beneficial to use the same knowledge entered once by an expert at
more than one place. For example, the same type of material could be used
by many different objects in a scene.

DISCUSSION

The taxonomy enabled implications directly relevant to our framework. As
was the aim, concretizing expert knowledge led to new understandings, like
forms better focusing on modelling reality, or the idea of also observing kno-
wledge added implicitly by the Data Scientist. These findings can be used
in the further refinement and development of our framework and software
system.

Beyond enabling implications for a software system, our taxonomy can
also be used for many other applications. Because examples from many dif-
ferent sources were used to create it, the taxonomy gives a diverse overview



Towards Knowledge-Based Generation of Synthetic Data 903

of knowledge types relevant for synthetic data generation in production. Pos-
sible applications include using it as an overview for teams deciding which
kinds of synthetic data knowledge to use in a project or as a basis for syste-
matically researching the impact of the different knowledge types in it on the
performance of ML models.

Despite these applications, our taxonomy should be seen as a proposal.
The focus in creating it was on combining a broad set of data into one stru-
cture. To achieve this, opinionated decisions were made that could also have
been made differently. Thus, there are other ways to taxonomize expert kno-
wledge and there are also knowledge types not yet included. Future research
projects can extend or adapt our taxonomy to fit their tasks, or they can also
use it as a baseline to discuss improvements or different structures altogether.

Back to our own use of the taxonomy, our implications can be further
worked out. On the one hand, they were derived rather broadly by using the
taxonomy to answer questions. These analyses could be repeated more syste-
matically to gain further confidence and a more detailed understanding of the
implications. On the other hand, the implications can be tested as hypotheses
in dedicated experiments. For instance, it could be tested whether End Users
from different fields really find it easier to just model reality than if they also
had to mind things like unrealistic variance for domain randomization. Such
systematic testing can show if the implications can hold and, if they do, then
to what extent.

Lastly, the breadth of knowledge types found shows that an add-on system
indeed appears useful because a system could hardly support all knowledge
types from the get-go. The categories in the taxonomy show that knowledge
types can be divided into distinct clusters. These clusters could become an
orientation for how add-ons could be grouped, e.g., one add-on focused on
“Humans”, one on “Defects”, and so forth.

CONCLUSION

In this paper, we have attempted to concretize several aspects of synth-
etic data generation in production. First, we presented a novel, human-
centered framework that introduces three key user roles for knowledge-
based synthetic data generation systems. Then, we attempted to concretize
what kinds of knowledge such systems can be extended with by syste-
matically collecting examples of knowledge and combining them into a
unified taxonomy with almost 300 nodes. This taxonomy is the first of
its kind that we are aware of and can be a basis for the further develo-
pment of such overviews. Finally, we have used our taxonomy to derive
implications for our framework and for synthetic data generation systems in
general.

We have published the entirety of our taxonomy online to further advance
progress in the field of knowledge-based synthetic data generation. Based
on the work presented in this paper, we have refined our framework and
developed a prototype software system. We plan to share more about these
progresses in a future, more practicality-oriented follow-up paper.



904 Petrovic et al.

REFERENCES
Alexopoulos, K.; Nikolakis, N.; Chryssolouris, G. (2020): Digital twin-driven supe-

rvised machine learning for the development of artificial intelligence applications
inmanufacturing. In International Journal of Computer IntegratedManufacturing
33 (5), pp. 429–439. DOI: 10.1080/0951192X.2020.1747642.

Denninger, M.; Sundermeyer, M.; Winkelbauer, D.; Zidan, Y.; Olefir, D.;
Elbadrawy, M. et al. (2019): BlenderProc. Available online at http://arxiv.org/pdf/
1911.01911v1.

Eversberg, L.; Lambrecht, J. (2021): Generating Images with Physics-Based Rende-
ring for an Industrial Object Detection Task: Realism versus Domain Randomi-
zation. In Sensors (Basel, Switzerland) 21 (23). DOI: 10.3390/s21237901.

Frolov, V.; Faizov, B.; Shakhuro, V.; Sanzharov, V.; Konushin, A.; Galaktionov, V.;
Voloboy, A. (2022): Image Synthesis Pipeline for CNN-Based Sensing Systems. In
Sensors (Basel, Switzerland) 22 (6). DOI: 10.3390/s22062080.

Margherita, E.G.; Bua, I. (2021): The Role of Human Resource Practices for the
Development of Operator 4.0 in Industry 4.0 Organisations: A Literature Review
and a Research Agenda. In Businesses 1 (1), pp. 18–33. DOI: 10.3390/busines-
ses1010002.

Morrical, N.; Tremblay, J.; Lin, Y.; Tyree, S.; Birchfield, S.; Pascucci, V.; Wald, I.
(2021): NViSII: A Scriptable Tool for Photorealistic Image Generation. Available
online at http://arxiv.org/pdf/2105.13962v1.

Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.; Abbeel, P. (2017): Domain
Randomization for Transferring Deep Neural Networks from Simulation to the
Real World. Available online at http://arxiv.org/pdf/1703.06907v1.

Zhou, L.; Zhang, L.; Konz, N. (2022): Computer Vision Techniques in
Manufacturing. In IEEE Trans. Syst. Man Cybern, Syst., pp. 1–13.
DOI: 10.1109/TSMC.2022.3166397.


	Towards Knowledge-Based Generation of Synthetic Data by Taxonomizing Expert Knowledge in Production
	INTRODUCTION
	A FRAMEWORK FOR KNOWLEDGE-BASED SYNTHETIC DATA GENERATION
	METHODOLOGY
	TAXONOMY OF KNOWLEDGE TYPES FOR SYNTHETIC DATA GENERATION
	IMPLICATIONS FOR OUR FRAMEWORK
	DISCUSSION
	CONCLUSION


