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ABSTRACT

In this paper, we aim to explore whether there is a relationship between task difficulty
levels, performance measures (accuracy rate and latency), and subjective workload
assessment (NASA-Task Load Index (TLX)), and how the band power varies in various
brain regions depending on the task difficulty level. N-back memory tests were per-
formed at four different difficulty levels. As the task difficulty level increased, both the
workload perceived by the participants and the latency in response time significantly
increased. The workload and its sub-dimensions perceived by the participants and per-
formance variables are also related to each other. In tests with longer response times
and fewer correct answers, participants reported that they felt more workload. It was
also revealed that the theta power in the prefrontal, frontal and central regions incre-
ased under more challenging task conditions, while the alpha power in the temporal,
parietal and occipital regions and low beta power in almost the whole brain decrea-
sed. For 49 EEG features, statistically significant difference was determined between
the task difficulty levels at the significance level of %1.

Keywords: Mental workload, Electroencephalogram (EEG), N-Back task, NASA-Task Load
Index (TLX)

INTRODUCTION

For safe and efficient human-machine interactions, the amount of mental
resources required by the task should not exceed available capacity of the
person. Therefore, determination of mental workload has critical importance
in the fields of human factors and ergonomics. On the other hand, measu-
ring mental workload directly and easily is a rather complex problem due
to its multidimensional nature. There are various techniques used to mea-
sure mental workload in the literature. These techniques can be divided into
objective or subjective and experimental or analytical (Rusnock et al. 2015).
Objective-experimental measures are primary/secondary performance mea-
sures and physiological methods. Scales such as NASA-TLX (Hart, 1988)
are shown as examples of subjective-experimental tools. Objective-analytical
tools are mathematical models, while subjective-analytical tools are expert
opinions.
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Within the scope of this study, it was aimed to analyse the sensitivity of
both objective experimental and subjective experimental measures to task
difficulty. NASA-TLX was selected to evaluate mental workload subjectively
because of its reliability and ease for implementation. Since its reliability has
been proven, in many studies NASA-TLX was used especially in combination
with physiological methods in order to show the validity and preferability of
a newly proposed method (Jo et al. 2012; Heine et al. 2017; Orlandi, 2018).
Among the objective techniques, performance-based techniques (accuracy
rate and latency) and EEG were used. EEG, which is one of the neurophy-
siological methods, has an excellent temporal resolution, and EEG indices
are highly sensitive to human brain activity fluctuations (Ismail, 2020). In
addition to its temporal dependability, EEG data is used by many researchers
because it can be measured anywhere with a portable device. One of the
most popular types of features extracted from EEG signals is power spe-
ctrum. In particular, alpha and theta activity has been verified to be effective
in discriminating mental workload levels and the frontal and parietal regions
of the brain have been found to be sensitive to mental workload (Zammouri
et al. 2018; Guan et al. 2022). Choi et al. (2018) developed a measurement
method called EEG-based workload index (EWI) and obtained a high corre-
lation by comparing with NASA-TLX. As the EWI increases, the workload
increases, and as EWI decreases, workload decreases (EWI = (Relative Beta
Power + Relative Gamma Power) / (Relative Theta Power + Relative Alpha
Power)). In a study, it was observed that the theta power in frontal brain
area increases while the alpha power in the parietal and occipital sites decre-
ases under high mental workload condition (Holm et al. 2009). It was also
reported that the task difficulty level was positively related to the frontal
theta/parietal alpha ratio. Similarly, increase in theta power spectral density
localized in frontal areas for higher activity was observed in another study.
With increasing mental workload, a decrease in alpha activity in the occipi-
tal regions and an increase in beta activity in the frontal regions were also
observed (Lim et al. 2018). Some results showed that with the increment of
task load, power of frontal theta and theta/alpha ratio in parietal regions
increased significantly first and decreased slightly then, while the power of
central-parietal alpha decreased significantly first and increased slightly then
(Guan et al. 2021). Prefrontal and frontal theta, prefrontal beta-high, occi-
pital, parietal and temporal gamma and occipital alpha activities were also
found to be the most effective parameters to classify mental workload level
(Harputlu Aksu and Çakıt, 2022). There are also studies showing that cen-
tral, parietal and occipital beta power is associated with changes in mental
workload (Yin and Zhang, 2017; Plechawska-Wojcik et al. 2019). Moreo-
ver, power of the high-frequency beta and gamma waves in posterior cortex
increases in response to changing task performance (Chuang et al. 2012).

One of the main motivations of this study was to statistically demonstrate
for further studies whether the predetermined task difficulty levels lead to
expected mental workload manipulation. Another motivation of the study
was to examine the role of brain-related data in discriminating mental wor-
kload levels. For this purpose, this study focuses on what kind of power
changes occur in which parts of the brain in which frequency ranges based
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on the change in task difficulty levels. The results are intended to be compa-
red with those previously achieved in the literature, and it is hoped that the
important findings of this study will shed light on future studies.

ANALYSIS OF MENTAL WORKLOAD

Methodology

The study was approved by the Research Ethics Committee of Gazi Uni-
versity, and all participants signed an informed consent in accordance with
human research ethics guidelines. Tests were conducted on 25 (13 males, 12
females) healthy undergraduate students. The mean age of the people exa-
mined was 21.7. EEG data were recorded with EMOTIV EPOC X device.
The resolution of the device is 14 bits and the sampling rate is 128 Hz. The
EPOC X device has 14 channels, and the sensor placements according to
the international 10–20 system (Homan et al. 1987). During the experiment,
the participants were instructed not to talk unnecessarily and not to move his
head as much as possible. First, the connection quality and then the EEG qua-
lity were checked, and the experiment was not started before the connection
quality was 100%.

N-back memory tests were performed using Inquisit Lab 6 (trial version)
at 4 different difficulty levels. As the number of “n” increases, the difficulty
of the task increases. Each letter was displayed for a duration of 500 millise-
conds (ms) and the total time until the next letter is displayed was 2500 ms.
Participants were asked to press keypad button “M” with their right index
finger in response to a “match stimulus” and press keypad button “L” with
their right middle finger in response to a “non-match stimulus” as fast as
possible. Letter “M” was the match in the 0-back condition. In the 1-back
condition, the participant was instructed to press “M” if the letter on the
screen is the same as the previous one, otherwise to press “L”. In the 2-back
condition, a letter was the match if it was shown two screens back. In the
3-back condition, a letter was the match if it was shown three screens back.
A total of 15 letters are displayed in the 0-back task, 16 letters in the 1-back
task, 17 letters in the 2-back task, and 18 letters in the 3-back task. The expe-
cted number of answers for each difficulty level is 15. A total of 20 different
consonants, including English letters such as X and W, were used in the tests.
The match/mismatch ratio was set to 1:2. So, five of the letters were targets.

Each session included 12 n-back blocks, 3 from each condition. Each block
was applied in random order in terms of difficulty level. After each block,
participants were asked to subjectively evaluate the mental workload, using
the NASA-TLX scale. In addition, the participants were asked to prioritize
the 6 sub-dimensions of NASA-TLX through the pairwise comparison tables
given to them. Weighted total NASA-TLX scores were obtained by using the
weights obtained as a result of 15 pairwise comparisons. The recording time
with one participant was approximately 20 minutes. A photograph taken
during the implementation of the experiment is given in Figure 1.

In this work, performance data of the participants was obtained through
the Inquisit Lab 6 software. The band powers of 4–8 Hz (theta), 8–12 Hz
(alpha), 12–16 Hz (low beta (betaL)), 16–25 Hz (high beta (betaH)) and



118 Aksu et al.

Figure 1: A shot taken from the experiment.

25–45 Hz (gamma) bandwidths for each EEG channel were extracted by
using EMOTIV Pro software. The raw EEG signals were also pre-processed to
clean noise from data by using the EEGLAB toolbox (Delorme and Makeig,
2004). In the pre-processing step EEGLAB’s STUDY functionality was used to
explore the EEG mechanisms across subjects for the different task conditions.

The band-pass was filtered from 1 to 50 Hz using a finite impulse response
(FIR) filter. Line noise of 50/60 Hz was removed by using the CleanLine
plugin. Independent Component Analysis (ICA) was implemented as ano-
ther step of noise removal. Attributes of the components were observed
by the ICLabel function, and components that were estimated to be ocu-
lar, muscular, or some other source with more than 90% probability were
discarded.

Results

The statistical analysis was performed using SPSS 21.0 software for two
sets of data. The first dataset, which included 300 session-based samples,
was conducted in order to examine the possible relationship between task
difficulty levels, performance criteria, and subjective assessments of mental
workload. The second dataset, on the other hand, was analysed on the basis
of stimulus and consisted of 84 EEG features (5 frequency band power and
theta/alpha ratios for 14 channels) corresponding to recording samples. Due
to the quality of the EEG recording only 15 participants (8 males, 7 females)
were selected for further analysis on the second data set to obtain more relia-
ble results. Therefore the second dataset consists of 2700 samples (15 subjects
x 12 sessions x 15 stimuli).

The analysis of correlation was implemented to examine the relationship
between the task difficulty, NASA-TLX scores and performance measures.
The results indicate that different complexity levels of n-back task have a
significant effect on both participants’ performance and perceived workload
by them (see Table 1). A significant positive correlation with a coeffici-
ent of 0.759 was found between the task difficulty level and the weighted



Investigating the Relationship Between EEG Features 119

Table 1. Correlation values for NASA-TLX and performance
features with difficulty level.

Features Spearman Correlation
Coefficient (p < 0.01)

Weighted Total
NASA-TLX Score

0.759

Mental Demand 0.788
Physical Demand 0.153
Temporal Demand 0.636
Own Performance 0.614
Effort 0.706
Frustration 0.408
Number of Hits −0.491
Number of Correct
Rejects

−0.440

Mean Latency 0.636
Accuracy Rate −0.562

total NASA-TLX score at 99% confidence level. It was seen that the sub-
dimensions most correlated with the “Weighted Total NASA-TLX Score”
were “Effort”, “Mental Demand” and “Temporal Demand” and “Own Per-
formance”, respectively (rho > 0.8, p < 0.01). It was also revealed that there
was a significant relationship between task difficulty level and performance
measures. Especially, the latency in response time increases dramatically as
the task difficulty level increases. As expected, the rate of correct answers
decreases as the task gets more difficult. The number of hits (correct answ-
ers by detecting the match) was found to be more correlated with the task
difficulty level compared to number of correct rejects (correct answers by
detecting the non-match). This result shows that the harder the task, the har-
der to detect especially the target. As another result of the correlation tests,
the workload and its sub-dimensions are also related to performance varia-
bles. As the weighted total NASA-TLX score increases, the accuracy in the
tests decreases and the latency in response time increases. In tests with longer
response times, participants reported that they felt more workload (rho > 0.6,
p < 0.01). Conversely, the number of correct answers decreased (rho > 0.6,
p < 0.01). It is notable that the scores given by the participants to the “Own
Performance”, sub-dimension of NASA-TLX, are consistent with the actual
performance results. It was also found that there was a significant difference
between all difficulty levels compared in pairs, in terms of almost all variables
(p < 0.001). There was no significant difference between men and women in
terms of performance measures. However, men were found to report higher
NASA-TLX scores than women, especially on difficult tasks.

Correlation tests also demonstrated that the EEG variables showing the
highest correlation with the task difficulty level were theta power in the AF3,
AF4, F7, F8 and FC5 regions. Only significant correlations with rho > 0.3
are included in this paper (see Table 2).

These results show that theta power in the prefrontal, frontal and central
regions increases as the task difficulty increases. The correlation coefficients
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Table 2. Correlation values for EEG features with task diffi-
culty level.

EEG Features Spearman Correlation
Coefficient (p < 0.01)

POW.AF3.Theta/Alpha 0.366
POW.AF4.Theta/Alpha 0.352
POW.AF4.Theta 0.350
POW.FC5.Theta/Alpha 0.339
POW.F7.Theta/Alpha 0.335
POW.F7.Theta 0.330
POW.F8.Theta/Alpha 0.322
POW.AF3.Theta 0.320
POW.F8.Theta 0.319
POW.FC5.Theta 0.303

of the variables related to theta/alpha power ratios in the same brain regions
were found to be slightly higher. Although the correlation coefficient was
lower, it was revealed that the task difficulty level was negatively correlated
with alpha power in O1, O2, T7 and P7 channels, positively correlated with
alpha power in F7 and F8 channels. While the alpha power in the frontal
regions increases, that in the temporal, parietal and occipital regions decrea-
ses with increased task difficulty level. It was observed that low beta power
decreased significantly in almost all brain regions as the task became more
difficult. It was also determined that the EEG variables showing the highest
correlation with the weighted NASA-TLX total score were the theta waves
received from AF4 and F8 and theta/alpha ratios from AF3, AF4 and F8 (rho
> 0.3, p < 0.01). In other words, as the perceived mental workload increases,
prefrontal and frontal theta also increases. However, with increased percei-
ved workload, low beta power in the prefrontal, frontal, parietal and occipital
brain areas decreases (rho > 0.2, p < 0.01). With Kruskal Wallis test, it was
investigated whether there was a significant difference between task difficulty
levels in terms of EEG variables. For 49 EEG features, statistically significant
difference was determined in at least one group distribution with the signifi-
cance level of 1%. When the rank values of the variables were examined, it
was noted that 34 of the 49 variables showed a smooth increase or decrease
according to the task difficulty changes. In more challenging task conditions
(2-back and 3-back), the theta power was higher in the prefrontal, frontal
and central regions, the alpha power was lower in the temporal, parietal and
occipital regions, and beta power in almost all brain regions was also lower.
Scalp topographies showing the change of power in theta, alpha and low beta
frequencies based on task difficulty levels are shown in the Figure 2.

Regions with high power are shown in red and regions with low power
are shown in blue. The colour change from red to blue indicates a decrease
in power. Four difficulty levels are given in order from left to right (0-back
on the left, 3-back on the right). When the topography of theta frequency
given at the top is examined, it can be seen that the prefrontal and frontal
regions turn dark red towards difficult tasks. For the alpha frequency, areas
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Figure 2: Scalp topography for different frequency bands (from top to bottom respe-
ctively for theta, alpha and low beta frequency bands).

that turn blue in topography towards difficult tasks indicate that the power
in the alpha frequency especially in temporal, parietal and occipital areas
decreases. In the bottom topography, which corresponds to the low beta fre-
quency, as the task difficulty level increases lightening of the red colour and
increase in the intensity of the blue colour across the map is remarkable. This
change confirms that there is a decrease in beta power in EEG signals received
from different parts of the brain as the task becomes more difficult. Since the
results of the variation of high beta and gamma power according to the task
difficulty were not significant, scalp topographies related to those frequency
bands were not given.

CONCLUSION

The current paper presented a statistical analysis of whether pre-determined
task difficulty levels led to the intended mental workload manipulation. The
change in difficulty levels caused significant changes in both subjective and
objective mental workload measures. As expected, both NASA-TLX and
performance variables were found to be significantly correlated with task
difficulty levels. As the task difficulty level increases, the perceived workload
and latency in response time also increase. In addition to correlation analy-
sis, variance analysis indicated that there was a significant difference between
task difficulty levels in terms of all performance and NASA-TLX features and
most of the EEG features. This study also confirms that EEG signals play an
important role in analysis of mental workload. Especially alpha, theta and
beta activities in the brain can be used as indicators for distinguishing mental
workload levels.

The results of the study verify the rationality of the tasks and support the
use of the pre-determined task difficulty levels as an output variable in the
mental workload level classification model to be studied hereafter. Significant
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relationships between data collected through different techniques encourage
the use of these techniques together for reliable analysis in future studies.
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