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ABSTRACT

In order to simulate the cooking process heated by gas, considering the characteristics
of water and edible oil and combining with the existing heat transfer research, a coo-
king heat transfer model with mass dissipation of heating medium was constructed in
this paper. The numerical simulation of the heat-transfer model under different heating
conditions was carried out with MATLAB. The container and the medium temperature
simulation results fit well with the experimental data under the same conditions. Based
on the physical model, two deep learning models, MDTN (Multiple Time Difference
Network) and LSTM (Long Short-Term Memory), were used to learn the variation law
of the container temperature during heating. When using the MDTN model to predict
the temperature value over a long time horizon, the actual temperature of the con-
tainer was required to be added to the dataset intermittently to prevent temperature
error from diverging gradually. However, when using the LSTM model for prediction,
since the temperature change was relatively stable, this model could predict the tem-
perature of a longer time series using only the initial temperature sequence, and the
prediction result was close to the actual temperature. The prediction results of both
models conformed to the laws of physics.

Keywords: Cooking heat transfer, Numerical simulation, Machine learning, LSTM, MDTN,
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INTRODUCTION

With the continuous development of society and technology, emerging scie-
nce and technology have a more significant impact on human life, and the
scope of influence is also more extensive. In the cooking industry, with the
development of artificial intelligence and various automation technologies,
some intelligent cooking robots and related patented technologies have emer-
ged (Su and Zhang, 2015; Yang, Ma and Guo, 2018). However, due to its
high cost and complex complete sets of equipment (Zheng, Jiang and Song,
2021), manual cooking still occupies a dominant position compared with
intelligent cooking in modern Chinese families and the catering industry. At
the same time, machine learning technology has many branches and is widely
used, and many scholars have used deep learning methods to predict tempe-
rature changes in different fields. Li et al. (2022) proposed a deep multi-time
differential network (MTDN) to predict the indoor temperature at the next
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moment and optimize the heating strategy. Zhang and Han (2022) combi-
ned Recurrent Neural Network (RNN) and Convolutional Neural Network
(CNN) and used ConvGRU deep network model to predict ocean surface
temperature. Luo, Zheng and Chen (2022) compared the prediction results
of the Autoregressive Integrated Moving Average model (ARIMA) and the
LSTM model for the global average surface temperature and optimized the
LSTM model to predict the global average surface temperature more accu-
rately. Li and Han (2019) used the LSTM model to simulate and analyze the
thermal station and optimize the heat distribution of the thermal station.

By integrating the above research contents, machine learning can be used
to predict the change in container temperature during cooking. Then the
heating of the cooking process can be controlled according to the predicted
temperature. Compared with the cooking robot, this method only needs a
sensor to collect the container’s temperature, which is simpler in the physi-
cal structure and control method and can accelerate the intellectualization of
the cooking method. Based on the existing research on heat transfer in coo-
king (Deng, 2013), this paper simplifies the heat transfer model according to
the characteristics of the heat transfer medium (Zhao, 2009; Chen, Hu and
Cheng, 2003), focusing on the temperature change of the container and the
medium. The above heat transfer model was simulated using Matlab softw-
are, and the simulation results were compared with the experimental heating
data. The simulation results fit well with the experimental data regarding
temperature change of container and mass dissipation of medium. This heat
transfer model could obtain container temperature data under different hea-
ting conditions through simulation and build a large number of datasets for
machine learning. It solved the problem that only a small amount of data
could be obtained through experiments, which made it possible to apply the
machine learning method in the field of cooking heat transfer. In order to
learn the rule of container temperature change during the heating process,
the MTDN model and LSTM model were used to predict the container tem-
perature. The two deep learning models differed in implementation, and the
two models had their advantages in prediction. Both models could achieve
temperature predictions that were close to the target temperature. The heat
transfer model constructed and the machine learning method used in this
paper could provide a new solution for the field of cooking heat transfer.

CONSTRUCTION OF HEAT TRANSFER MODEL

Typical Chinese cooking was characterized by the heating process of stirred
liquid-food particles in an open container. As this paper focused on the tem-
perature of the container and medium, food particles could be omitted. The
direction of heat transfer was from the heat source to the container and then
to the medium. The mode of heat transfer covered conduction, radiation,
and convection. In the process of heat transfer, the containers used in coo-
king are mostly thin-walled metal, with high thermal conductivity and little
influence on the overall thermal resistance. The heat transfer in the liquid
with a small volume was mainly carried out by convection, and its internal
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Figure 1: Process of heat transfer.

thermal resistance was also ignored. The heat transfer model’s overall thermal
resistance was shown (see Figure 1).
Governing equation of container heating

In the process of cooking, when the gas was used as the heating source and
the ambient temperature was stable, the heat balance of the container was as
follows:
Gas radiation heating + Gas convection heating = Container heat absor-
ption + Container radiation heat dissipation + Container conduction heat
transfer to the medium. The heat conduction control equation of the contai-
ner could be established as follows:

ρvCv
∂Tv
∂t
= 1(KvTv)

• ρv: Density of the container (kg/m3)
• Cv: Specific heat capacity of container (J/kg·K)
• Kv: Thermal conductivity of container (W/m·K)
• Tv: Temperature of the container (K)
• 1 : ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, Laplacian operator, x, y and z are Cartesian

coordinates

Boundary conditions for the container:

1) The outer wall of the container was heated by radiation and gas conve-
ction, and the outer boundary conditions were as follows:

Kv∇Tv = hvb(Tb − Tvos) + σεvb(T
4
c − T

4
vos)

• ∇ : ∂
∂x i +

∂
∂y j +

∂
∂zk, Hamiltonian operator, and ijk are unit vectors

in the direction of XYZ respectively
• hvb: Flame-vessel convective heat transfer coefficient (W/(m2·K))
• Tb: Temperature of flame (K)
• Tvos: Temperature of the outer wall of the container (K)
• σ : Stephen Boltzmann constant (W/(m2·K4))
• εvb: Emissivity of heat transfer system between bottom of combustion

chamber and outer wall of the container
• Tc: Temperature at the bottom of the combustion chamber (K)



288 Shi et al.

2) The convection heat transfers from the inner wall of the container to the
medium had the following inner boundary conditions:

Kv∇Tv = −hvf(Tvis − Tf )

• hvf: Container-medium convective heat transfer coefficient (W/(m2·K))
• Tvis: The temperature of the inside of the container (K)
• Tf : Temperature of medium (K)

3) The radiative heat dissipation of containers exposed to air had the
following conditions

Kv∇Tv = − σεv(T4
ve − T

4
e )

• εv: Emissivity of the container
• Tve: Temperature of the container wall exposed to air (K)
• Te: Ambient temperature (K)

Governing equation of medium heating

hvfAvf(Tf − Tvis) = −mfCf
dTf
dt
−meLf − σAf εf (T

4
e − T

4
f )− Afhfe(Te − Tf )

• Avf: Convective heat transfer area between container and medium (m2)
• mf : Mass of medium (kg)
• Cf : Specific heat capacity of the medium (J/kg·K)
• me: The evaporation mass of the medium (kg)
• Lf : Latent heat of vaporization of the medium (J/kg)
• Af : The area of contact between medium and air (m2)
• εf : Emissivity of the medium
• Tf : Temperature of the medium (K)
• hfe: Medium-air convection heat transfer coefficient (W/(m2·K))

The evaporation mass (me) was related to mass transfer coefficient (βp),
wet air pressure (Pv), and saturated layer water-air pressure (P

′′

v). The latent
heat of vaporization (Lf ) was inversely proportional to the temperature of
the medium. It could be obtained from the latent heat of vaporization (Lfb)
at the medium’s boiling point and current temperature. The contact area (Af )
between the medium and air was related to the medium’s mass and the con-
tainer’s shape, which needed to be calculated and modified according to the
actual medium’s value in the model.

COMPARISON OF EXPERIMENTAL AND MODEL RESULTS

Based on the above mathematical model, the simulation calculation of
medium heating was carried out using MATLAB. In order to compare with
the actual results, the experiment of medium heating was carried out under
certain conditions. The main experimental facilities were a heating device,
a container, two sensors, and a data acquisition terminal (see Figure 2 and



Construction of Cooking Heat Transfer Model and Prediction of Temperature 289

Figure 2: Schematic of the experiment.

Figure 3: Experiment devices.

Figure 4: Comparison of simulated values with experimental results.

Figure 3). A fixed mass of water was heated by gas in a stainless steel frying
pan. Two temperature sensors were placed to measure the temperature of
the container and the medium, respectively. The termination condition of the
experiment was the boiling of the medium. In the course of the experiment,
it was necessary to record the temperature change of the container and the
medium and the quality change of the medium.

The comparison between the experimental and model simulation results
was shown on the premise that the experimental conditions were consistent
with the simulation conditions (see Figure 4). The comparison results showed
that under the same conditions, the simulation results were in good agreement
with the experimental results within an acceptable error range. The results
proved that the model could be used to simulate other conditions of specific
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heating, which means that this model could provide a large amount of data
for machine learning training.

PREDICTING TEMPERATURE WITH MACHINE LEARNING

In order to learn the temperature change rule of the container during the
heating process, the above heat transfer model was used to obtain contai-
ner temperature data under different heating conditions through simulation.
The data format and pre-processing methods would also differ for different
machine learning models. In this paper, the MTDN and LSTM models were
used for comparative analysis.
Predicting temperature by MTDN model

The Multiple Time Difference Network (MTDN) model is a machine lear-
ning prediction model that combines the three parts of the past moment, the
adjacent moment, and the current moment to predict the next moment’s state
jointly.

In this paper’s temperature prediction, the input model’s characteristics
were the temperature Tt at the current moment, the temperature Tt−1 at the
adjacent moment, and the temperature Tt−s at the random moment. The
model was based on the fully connected neural network, which contains one
input and output dimension and three hidden layers. The output values were
the predicted temperatures T̂t, T̂t + 1, and T̂t−s + 1 corresponding to the three
moments. The label values used in the model were 1T(t + 1,t) (the difference
between the target temperature at time t + 1 and time t) and1T(t + 1,t−s + 1)
(the difference between the target temperature at time t + 1 and the target
temperature at t − s+ 1). After obtaining the predicted temperatures at three
moments through the MTDN model, the difference between the predicted
values 1T̂(t + 1,t) and 1T̂(t + 1,t−s + 1) were obtained by taking the differe-
nce of the three parts of the temperature. Then the difference between the
predicted and the label values were calculated again, and the mean square
error was calculated by summation. After the total loss was calculated, the
model parameters were updated by backpropagation. The overall structure
of the MTDN model was shown in Figure 5.

Fifty thousand pieces of data were generated using the heat transfer model
built above for machine learning training. When using the MTDN model
for actual prediction, the temperature Tt + 1 at the next moment could be
predicted only by passing in adjacent temperature Tt−1 and current tem-
perature Tt. When using only two initial temperature values to predict the
subsequent temperature over a long period of time, the error between the
predicted and target temperature values gradually increased over time. The
mean absolute deviation(MAD) between the target value and the predicted
value was 9.314. A better-predicted temperature could be obtained when the
correction was performed using the target temperature discontinuity (one
correction every eight seconds). The value of MAD was reduced to 0.145.
The two kinds of temperature prediction results were shown in Figure 6 and
Figure 7.
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Figure 5: Structure of MTDN model.

Figure 6: Results of continuous temperature predictions.

Figure 7: Intermittently corrected temperature prediction results.

By comparing the two results, it could be seen that the MTDN model
could predict the temperature series in a short time of the container. When
predicting the temperature for a long time, the initial temperature must be
corrected intermittently to prevent the error from diverging.
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Figure 8: Structure of LSTM model.

Predicting temperature by LSTM model
Long Short-term memory model (LSTM) changes the hidden layer of the

traditional Recurrent Neural Network (RNN) model into a memory module,
which includes forget-gate, input-gate, and output-gate to control the reset,
read and write of input data respectively. During the calculation process, the
current unit will receive the output value and the cell state value passed by
the previous unit and read in the data. After the calculation of forget-gate,
input-gate, and output-gate, the current cell state value and output value are
obtained and input to the next cell. In the forward propagation process, the
LSTM model will choose the cell state to achieve the memory function. The
error backpropagation can efficiently calculate the gradient and update the
model parameters. In this prediction model, the length of the temperature
sequence input to LSTM was nine-time steps, and the input and output had
only one dimension (temperature value). The hidden layer dimension set in
this model was 32, and the number of cell layers was 2. The dataset used was
consistent with the MTDN model. The values computed by the LSTM were
fed into a fully connected layer, and the final output value was computed.
The constructed model structure was shown in Figure 8.

When constructing the data set required by the LSTM model, the tem-
perature data was normalized first to prevent the phenomenon of gradient
explosion in the calculation. The temperature of every nine-time steps was
taken as a group of inputs, and the next time step temperature was used as
the label value to train the model. The error of the LSTM model on the trai-
ning set and the test set were shown in Figure 9, and the temperature results
predicted by the LSTM model were shown in Fig. 10.

From the comparison of temperature curves, it could be seen that for this
heat transfer model, since the temperature of the container changed smoothly,
the LSTM model could predict the temperature of a longer time series using
only the initial temperature sequence, and the prediction result was close to
the target temperature. The MAD of the LSTM model was 0.509, which
proved that the predicted temperature was close to the target temperature.
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Figure 9: Loss on training and test dataset.

Figure 10: Comparison of predicted and target temperatures.

CONCLUSION

From the previous content, it can be concluded that the cooking heat transfer
model with the medium mass dissipation term constructed in this paper can
be used to simulate and analyze different heating situations. LSTM model
and MTDN model can be constructed by machine learning method to learn
the law of temperature change of container during heating. The two models
of machine learning have their own advantages. The MTDN model is rela-
tively simple, but the temperature needs to be modified intermittently when
predicting the temperature for a long time. In comparison, the LSTM model
can predict the temperature for a long time only according to the initial tem-
perature series. The prediction results of the two models are close to the
target results. The heat transfer model constructed and the machine learning
method used in this paper could provide a reference for future research or
application of cooking heat transfer.
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