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ABSTRACT

Stress is considered to be an emotional state deserving of special attention, as it brings
about harmful effects on human health when exposed to in the long term. Stress may
also induce general health risks, including headaches, sleep disorders, and cardiova-
scular diseases. Continuous monitoring of emotion can help patients suffering from
psychiatric disorders better understand themselves and promote the emotional well-
being of the public in general. Recent advancements in wearable technologies and
biosensors enable a decent level of emotion and stress detection through multimodal
machine learning analysis and measurement outside of lab conditions. As machine
learning solutions demand a large amount of training data, collecting and combi-
ning personal data is a prerequisite for accurate analysis. However, due to the highly
sensitive nature of medical data, the additional implementation of measures for the
preservation of user privacy is a non-trivial task when developing an AI-based stress
detection solution. We propose a novel machine learning stress detection system that
facilitates privacy-preserving data exploitation based on FedAvg, a renowned federa-
ted learning algorithm. We evaluated our system design on a standard multimodal
dataset for the detection of stress. Experiment results demonstrate that our system
may achieve a detection accuracy of 75% without jeopardizing the privacy of user data.
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INTRODUCTION

Emotion recognition is the act of recognizing and differentiating human affe-
ctions. Detecting human emotion has a wide range of potential applications,
especially in the domain of human-computer interfaces and healthcare. The
implementation of affection detection in autonomous vehicles, human-robot
interactions, video games, and recommendation systems are some of the most
desired topics of research [Bota et al., 2019]. Continuous emotion monito-
ring has the potential to help patients suffering from psychiatric disorders,
and to promote the emotional well-being of the public, resulting in improved
quality of life for many, along with making the prevention of mental illness
possible in the first place.

© 2023. Published by AHFE Open Access. All rights reserved. 340

https://doi.org/10.54941/ahfe1002853


Privacy Preserving Stress Detection System Using Physiological Data 341

In healthcare applications, stress is considered a noticeable emotional state,
as it harms human health when exposed to in the long-term. According to the
British Health and Safety Executive (HSE), stress and emotional difficulties
accounted for half of the cases of all work-related illnesses in the UK [Owen,
2022]. Stress can also lead to general health problems, such as headaches,
sleep disorders, and cardiovascular diseases. It may also decrease the work
efficiency of employees. An effective and automated stress detection method
may prove to be an excellent way to mitigate these problems.

Stress is a physiological response to a stimulus triggered by the sympath-
etic nervous system (SNS). The response can differ depending on the subject
and the measuring environment. Recent advancements in wearable tech-
nologies and biosensors enable decent stress detection through multimodal
machine learning analysis and off-lab measurement. Different sensors, inclu-
ding photoplethysmography (PPG) sensors to measure blood volume pulse
(BVP), thermometers to measure body temperature, and electrodermal acti-
vity (EDA) sensors to measure galvanic skin response may be loaded on
wearable devices. Data collected from these devices may in turn be used to
train artificial intelligence (AI) models for the detection of stress and emotion.

However, the application of AI in healthcare has certain challenges. Mach-
ine learning (ML), especially deep-learning (DL) solutions, demand a large
amount of training data which may require a significant amount of time to
collect. Also, due to the highly confidential nature of medical data, many
privacy related regulations such as the General Data Protection Regula-
tion (GDPR) are being actively introduced. While these legal protections are
necessary, one cannot deny that they add on to the burden when developing
AI solutions for medical applications.

Federated Learning (FL) is a learning paradigm that seeks to address the
problem of data management and privacy by training algorithms collabora-
tively without exchanging the training data itself. FL involves the training
of statistical models between remote devices or siloed data centers, such as
mobile phones or hospitals, all without sharing data. Therefore, FL is able
to address the problem of training data deficiency and privacy-preservation
[Rieke et al., 2020, Li et al., 2020]. Due to its significant advantage, FL is
proposed as an appropriate machine learning concept in the context of heal-
thcare. In this work, we aim to propose a stress detection system based on
the concept of federated learning.

RELATED WORKS

Physiological Data

Blood Volume Pulse (BVP) The blood volume pulse (BVP) signal is a mea-
sure of changes in blood volume in arteries and capillaries. It is measured
by shining an infrared light through human tissues and detecting their refle-
ctions using PPG sensors. The BVP amplitude displays moment-by-moment
heart rate variability (HRV) and may offer significant insight into individual
emotional responses.
Electrodermal Activity (EDA) In the last few decades, electrodermal acti-
vity (EDA) has been one of the most popular physiological signals when
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Table 1. Dataset distribution.

Class # of samples

Amusement 195
Baseline 628
Stress 355

concerning affective computing and emotion recognition. The detection of
changes in sweat gland activity for specific stimuli has allowed for the expan-
sion of the frontier in affective computing by providing real time autonomous
nervous system (ANS) activity monitoring. The EDA signal is mainly divided
into two parts: phasic and tonic components.

Skin Temperature (TEMP) Simple, accurate measurements of skin surface
temperature, particularly taken by wearable devices, are of growing interest
given their physiological significance.

Respiration Rate (RESP) The respiration and heartbeat signals are affected
by the emotional status of the subject. The mechanical activities of the heart
muscles and lungs induce a vibration inside the chest wall. A piezoelectric
cantilever placed on top of the chest surface is capable of collecting such
vibrations and converting them into an electrical voltage signal.

Dataset

We employ the WESAD dataset [Schmidt et al., 2018] to evaluate the perfor-
mance of our proposed system and compare the results. The WESAD dataset
consists of raw data collected by the RespiBAN Professional (PLUX Wire-
less Biosignals S.A., Portugal) wearable respiration monitoring system and
the Empatica E4 (Empatica Inc., USA) wristband. This dataset features the
physiological data of 15 subjects collected by the above devices, which are
classified into three classes; Amusement, Baseline, and Stress. The labels were
assigned using machine learning models, which were trained on sample data
from different emotional states [Schmidt et al., 2018]. Tab. 1 describes the
class distribution of the data in detail.

RespiBAN Professional The RespiBAN Professional is a chest-worn device
capable of recording the electrocardiogram (ECG), EDA, electromyography
(EMG), piezoelectric respiration (RESP), and TEMP data at sampling rates
of up to 1000Hz [Bio, 2018]. All signals were sampled at a rate of 700Hz for
the dataset. In this research, only RESP data was used for analysis.

Empatica E4 The Empatica E4 is a wrist-worn device which is capable of
recording acceleration (ACC), BVP, EDA, and TEMP. ACC data was sampled
at a rate of 32Hz, BVP at 64Hz, EDA at 4Hz, and TEMP at 4Hz. All types
of data measured using the Empatica E4 were used in this research.

System Design

We propose a system that analyses physiological data collected from weara-
ble devices to determine the emotional state of a given individual, aided by
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occasional user input via a dedicated mobile application, with an emphasis
on privacy.

Data From Wearable Devices

As our current work is focused on the privacy-oriented nature of the proposed
emotional state classification system, we will simulate the collection of data
from wearable devices by utilizing the WESAD dataset; described in Section
2.2. In the future, we will advance the proposed system based on directly
performed data collection using a smart watch that is fully integrated into
our system.

Custom Mobile Application

We make use of a custom mobile application that is designed to periodically
collect physiological data of choice from wearable devices. The mobile appli-
cation performs the function of visualizing the various kinds of physiological
data that was collected by the wearable device in use, and certain extra fea-
tures that were derived from the initial set of raw data. Enabling user-aided
emotion labelling and user interaction will be integrated to the application in
the future. Fig. 1a demonstrates our custom mobile application.

Privacy Oriented Analysis

Given the inherently private and sensitive nature of personal health data,
it could be said that maintaining the privacy of personal health data while
using it for analysis is of great importance. We attempt to tackle this issue
by using the FedAvg algorithm, a promising federated learning algorithm. By
implementing federated learning in our model, we rule out the possibility of
user privacy breach by ensuring that the central server never handles raw data
collected from wearable devices, but only uses the weights generated from the
user’s device on premise. Fig. 1b illustrates the overall learning process of our
system.

EXPERIMENT

We conduct experiments to evaluate our proposed system using PyTorch as
the machine learning framework with Python as the programming language
of choice. To accelerate the training process of the proposed machine learning
model, we use one NVIDIA RTX 2080 SUPER GPU with 8GB of memory.

Pre-Processing

The raw data (BVP, RESP, TEMP) from sensors are processed and extracted
into a form that can be employed in machine learning model training. The
time series data is analyzed with a window frame of 30 seconds as a data
point. We calculate the mean, standard deviation, minimum value, and maxi-
mum value for each window frame. On EDA data, we applied the cvxEDA
algorithm [Greco et al., 2015], which decomposes the measurement into the
tonic, phasic, and additive noise term using the convex optimization. The
components reflect changes in skin such as changes in skin conductivity and
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Figure 1: Sample human systems integration test parameters (Folds et al. 2008)..

Table 2. Complete list of features.

Type of data Features

BVP BVP-mean, BVP-std, BVP-min, BVP-max, BVP-peak-freq
EDA phasic EDA-phasic-mean, EDA-phasic-std, EDA-phasic-min, EDA-phasic-max
EDA smna EDA-smna-mean, EDA-smna-std, EDA-smna-min, EDA-smna-max
EDA tonic EDA-tonic-mean, EDA-tonic-std, EDA-tonic-min, EDA-tonic-max
Respiration rate Resp-mean, Resp-std, Resp-min, Resp-max
Body temperature TEMP-mean, TEMP-std, TEMP-min, TEMP-max, TEMP-slope
Personal measurement Age, Height, Weight

the sweat glands, thus enabling stress detection. We also calculated statistical
values for the three types of data, respectively.

Tab. 1 shows the number of samples for each class we can extract from
15 subjects in the WESAD dataset. Also, the complete list of 29 features
extracted from sensor data and personal measurement is shown in Tab. 2.

Training Procedure

We simulate the training process with 14 clients on our custom designed fede-
rated learning framework. The server first broadcasts a neural network model
(Fig. 2 with all parameters initialized to zero. Each client owns the data from
one subject from the WESAD dataset. The clients train the received model
using the local data and send the model parameter values back to the server.
The server aggregates the model weights from all the clients using the cano-
nical FedAvg algorithm [McMahan et al., 2017]. The aggregated model is
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Figure 2: Neural Network Architecture.

Table 3. Accuracy comparison between cen-
tralized training and the proposed
federated learning approach.

Subject Centralized Federated (Proposed)

S2 76% 73%
S3 66% 55%
S4 83% 82%
S5 42% 75%
S6 81% 87%
S7 69% 66%
S8 78% 78%
S9 99% 96%
S10 74% 76%
S11 78% 64%
S13 73% 74%
S14 77% 70%
S15 92% 89%
S16 72% 79%
S17 62% 53%
Mean 74.8% 75.0%

evaluated at the server on unseen test data and is broadcasted back to the
clients for further training. The entire process continues until the aggregate
model converges.

The entire process mimics the scenarios in which multiple users separa-
tely train the machine learning model on their personal data and contribute
to the global model by providing only the trained model weights, thus not
exposing the private data. We simulate the training process 14 times; each
training includes 200 communication rounds, resulting in a fixed learning
rate of 0.005.

EVALUATION

The proposed federated learning stress detection system is simulated with
14 clients; each client is assigned to a single subject data from the WESAD
dataset. Data of one subject is reserved as the unseen test data to evaluate the
aggregated model after each round. This method is similar to the Leave One
Out Cross Validation (LOOCV) method, which is also a widely used method
for evaluating machine learning models. For comparison, we conduct traditi-
onal centralized training; data from 14 subjects are used to train one model,
and the remaining subject data is used for evaluation. The training hyper-
parameters are kept constant during both federated learning and centralized
learning. The accuracy values of the two methods are presented in Tab. 3 for
comparison.
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(a) Accuracy of each subject for unseen test data

(b) Accuracy over communication round

Figure 3: Evaluation results.

Overall, our proposed system shows an equal level of performance in com-
parison to the traditional centralized system, where the users must agree to
share their data with the server to train a single model on a central server.
The accuracy of each method is evaluated with the unseen test data, which is
presented in Fig. 3a. We can observe that the physiological data of the stres-
sed state varies vastly according to each person. Thus personalization of the
machine learning model is crucial in the stress detection system and will be
considered in future research to enhance performance.

Lastly, the accuracy of the aggregated model over each communication
round is presented in Fig. 3b. The plot shows that the aggregated model
converges after 100 communication rounds, thus achieving the best accuracy
possible at that stage. Nevertheless, as the volume of training data increases
over time, increasing the number of communication rounds is necessary to
guarantee that the aggregated model converges to its global optimum.

CONCLUSION

Physiological data from sensors embedded in wearable devices combined
with artificial intelligence facilitates the detection of stress and emotion,



Privacy Preserving Stress Detection System Using Physiological Data 347

which brings benefits not only to patients with psychiatric disorders, but also
to the general population. We proposed a stress detection system based on
federated learning to help preserve the privacy of user data while engaging
in analytic activities concerning user stress and emotional state. We demon-
strated that our design could achieve the same performance with traditional
centralized system designs. In the future, we plan to improve the strategy for
updating the detection model with newly collected data over time as well as
enhancing the robustness of the system to cope with heterogeneous data from
malfunctioning sensors and user dropouts.
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