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ABSTRACT

In this work, a nonlinear multidimensional regression-tensor (valence 3) model is con-
structed and investigated for the analytical substantiation of the necessary / sufficient
conditions for optimizing the technological calculation of the multifactor physico-
chemical process of hardening complex composite media of metal coatings. An
adaptive-a posteriori procedure for the parametric formation of the target functional
of the quality of the integrative physical and mechanical properties of the designed
metal coating is proposed. The results of the study can serve as the basic elements
of the mathematical language in the creation of automated design of precision nano-
technologies for hardening the surfaces of complex composite metal coatings on the
basis of group accounting of multifactorial tribological, as well as anti-corrosion, tests.
In this case, the main goal is not so much the formal accuracy of inferences, but rather
the clarity of concepts in the development of general problems of tribology associated
with precision modeling of nanostructures of complex composite metal coatings. The
multivariate regression-tensor model for tribological / anti-corrosion tests is substanti-
ated by means of the least squares identification of multivariate nonlinear regression
equations with the minimum tensor norm. This approach, due to the abundance of
available computational problems, as well as due to the possibilities that it opens
up for applications of nonlinear multivariate regression tensor analysis, can acquire
great (extended) significance in the problems of precision multifactorial nonlinear opti-
mization of physicochemical processes. strengthening of complex composite metal
coatings and metamaterials.

Keywords: Hardening composite metal coatings, Complex tribological tests, Optimal physical
and chemical process, Multivariate regression-tensor analysis

INTRODUCTION

Nonlinear integrative chemical-physical (CP) processes are at the heart of
approaches to hardening various surfaces of modern power machines, and
this raises questions that are determined by the formulation and investi-
gation of their mathematical models. In this regard, regression analysis
models are also of interest, where tensor-regression systems are a sought-
after class. These systems, on the one hand, are close to polynomial models
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(Draper and Smith 2007) in their predictive properties, admitting analytical
description based on tensor calculus (Akivis and Goldberg 1972), functional
analysis of strong differentials Frechet (Kolmogorov and Fomin 1976) from
nonlinear vector-functions, as well as extreme problem theory. At the same
time, they acquire an important role in the nonlinear analysis of multifactorial
tribological (Rusanov et al. 2014) and anticorrosion (Rusanov et al. 2012b)
properties of complex metal coatings based on mathematical modeling of
physical and mechanical (PM) properties of composite media, developing a
nonlinear predictive analysis of integrative characteristics of metal coatings
induced by the simulated geometry of surface nanostructures (Khomich and
Shmakov 2012; Gerasimov et al. 2014).

The mathematical problems of modeling CP processes formulated in the
conclusions of papers (Rusanov et al. 2014; 2012b) are developed below. The
main goal is not so much the formal accuracy of inferences, but rather the
clarity of concepts in the development of general tribology problems (Trukh-
anov 2013) related to the precision modeling of nanostructures of complex
composite metal coatings. In this regard, the problem of formulating the
PM functional evaluating the CFF mode of hardening of composite metal
coatings is considered. Analytical interpretations of multi-bound conditions
for optimization of the CP-mode, under imposed nonlinear (and essentially
difficult to formalize) constraints, are constructed (Yakovlev et al. 2012).
A multidimensional tensor regression model for tribological/corrosion tests
is substantiated by identifying multidimensional nonlinear PM regression
equations with a minimum tensor norm using the least mean square (LMS).

Motivations, terminology, and problem statement. Let R a field of real
numbers, Rn a vector n-dimensional space over the field R with Eucli-
dean norm ‖∗‖Rn , col(w1, . . . ,wn) ∈ Rn a column vector with elements
w1, . . . ,wn ∈ R and let Mn,m(R) the space n × m-matrices with elements
of R. Moreover, let Tk

m the space k of -valued covariant tensors (Akivis
and Goldberg 1972, p. 61), or, in other words, of real polylinear forms

f k,m : Rm
1 × . . . × Rm

k → R with norm
∥∥∥f k,m∥∥∥

Tkm
:=

( ∑
t2...j...

)1/2
. Here{

t...j...
}
is the “coordinate matrix” of tensor f k,m with respect to the canonical

basis (Horn and Johnson 1989) in the vector space Rm.
Let v ∈ Rm a vector of varying HF-predictors (Draper and Smith 2007)

for the nonlinear PM-regression with a fixed origin in ω ∈ Rm (the reference
Cf-mode hardening), w(ω + v) ∈ Rn is a vector of PC-variable indica-
tors. For the precision description of themultifactor physico-chemical process
we consider a multidimensional functional nonlinear system of the ινπυτ–
oυτπυτ type, which is described by k-valued vector-tensor PC-regression
equation of the form:

w(ω + v) = col

( ∑
j = 0,...,k

f j,m1 (v, . . . , v), . . . ,
∑

j = 0,...,k

f j,mn (v, . . . , v)

)
+ ε(ω, v) (1)

Function f j,mi ∈ Tj
m, ε(ω, ·) : Rm

→ Rn is a non-parameterizable vector
function of the class

‖ε(ω, v)‖Rn = o
((

v21 + · · · + v2m
)k/2)

, (2)
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v = col (v1, . . . , vm) , f
0,m
i 0-rank tensor, representing the tribological

index wi, i = 1,n PM-quality of the investigated CP process in its reference
mode, given by the vector ω ∈ Rm.
Remark 1. The precision of nonlinear simulation of the CP process in a

class of regression-tensor systems (1) (and adaptation of their parameters)
is correct because of continuous dependence (Kolmogorov and Fomin 1976,
p. 495) of solutions of the differential diffusion equation on its initial boun-
dary conditions. The tensor structure of equation (1) arises in accordance
with Theorem 3 (Kostrikin and Manin 1986, p. 255) and the polylinear
character (Kolmogorov and Fomin 1976, p. 490) of the Frechet derivati-
ves of higher orders at calculation of the strong differentials at ω from the
vector-function w(·) = col (w1(·), . . . ,wn(·)). Which ultimately summarizes
statement 2 of (Rusanov et al. 2012a) (see problem (I) below). The predictive
accuracy of the nonlinear PM modelling is represented by the functional esti-
mate (2), as the residual term in the Peano form associated with the exponent
k-valence of the tensor equation (1).

The problem of multidimensional nonlinear tensor-regression modeling of
the chemical-physical multifactorial metal coating process, which is opti-
mal with respect to a certain “target criterion”, is set and studied in other
papers for the 2-valent model (1). At the same time, analytical solutions of
three related methodological positions of this problem of nonlinear optimal
mathematical CHF modeling were obtained:

(I) for a fixed vector-predictor ω ∈ Rm and its open neighborhood V ⊂
Rm analytical conditions are defined, under which the vector-function w(·) :
V → Rn of the PC-property indicators satisfies the multidimensional tensor-
regression system (1);

(II) obtained a direct algorithm for identifying tensor coordinates
f j,mi , i = 1,n, j = 0, 2 in the 2-valued tensor-regressive model (1) based
on the numerical solution of the LMS problem of a posteriori optimal PC
modeling with two criteria:


min

 ∑
l = 1,...,q

(∥∥∥∥∥w(l) − col

( ∑
j = 0,...,k

f j,m1 (v(l), . . . , v(l)), . . . ,
∑

j = 0,...,k
f j,mn (v(l), . . . , v(l))

)∥∥∥∥∥
Rn

)2
1/2

min

( ∑
i = 1,...,n

∑
j = 0,...,k

∥∥∥f j,mi ∥∥∥2
Tjm

)1/2

,

,

(3)

wherew(l) ∈ R
n, v(l) ∈ Rm, l = 1,q respectively, the vectors of experimental

factor-predictors of the CF process, i.e.,w(l) is the a posteriori response to the
target variation v(l) with respect to the coordinates of the reference vector ω
under the condition

∥∥v(l)∥∥Rm < 1 (this inequality is methodologically dictated
by condition (2)) q the number of conducted tribological experiments (deter-
mined by representativeness of model (1)), carried out taking into account
the diffusive multifactor dynamics of CF processes (Kärger et al. 2005);

(III) for the 2-valued tensor-regression model (1) at a given predictor
ω ∈ Rm and the nominal condition ε(ω, ·) ≡ 0 The analytical solution of
the minimization problem, as a nonlinear “v-optimization” of varying (with
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respect to vector ω) factor-predictors of predictive PC-characteristics for the
considered composite metal coatings:

max
v∈Rm

F(v) : = rTw(ω + v) = r1w1(ω + v) + · · · + rnwn(ω + v), (4)

where the vector-function v 7→ w(ω+ v) = col (w1(ω + v), . . . ,wn(ω + v))
has a coordinate representation according to the identified LSM model
(1)–(3), and ri > 0 weighting coefficients showing the priority of the PC-
indicators; it is also possible to study the problem (III) under some rj < 0,
which corresponds to the methodological position where in the PC-indicators
wj should be minimized.

The value of nonlinear multifactor tensor-regression analysis is not only
in the exact theorems already derived by this method (Rusanov et al.
2014; 2012a), but also in simple and clear heuristic rules (e.g., the condition
of experiments

∥∥v(l)∥∥Rm < 1, or equality n = m in consequence 2) involved in
the construction of optimal multivariate posterior modeling. Over time, these
rules can be brought to the level of strict theorems of regression analysis, but
even now their usefulness is undoubted, as experimentally shown in (Rusanov
et al. 2014; 2012b) (in (Rusanov 2014) the problem of surface nitriding was
considered, and in (Rusanov et al. 2012b) the problem of sulfochromination).
Problem statements (based on the results of (Rusanov et al. 2014; 2012b)):
(i) determine necessary and sufficient conditions of solvability of optimiza-

tion problem (4) for 3-valued (k = 3) functional tensor-regressive system (1);
(ii) construct an algorithm for correction of sufficient conditions of extre-

mum of the stationary point of problem (i) based on r-parametric tuning
r 7→ rTw(ω + v) PC-functional

v 7→ F(v) = rTw(ω + v). (5)

Optimization of physical and mechanical parameters of the hardening pro-
cess of metal coatings. Let us consider problem (i) on optimization of the PM
characteristics of metal coatings at k = 3; note that the solution of the asso-
ciated multi-criteria problem (II) of parametric identification for k = 3 is
an uncomplicated modification of statement 3 from (Rusanov et al. 2012a).

In such mathematical statement the nonlinear multivariate prognostic
equation (1) can be given in the following vector-matrix-tensor form:

w(ω + v) = c + Av + col
(
vTB1v + f 3,m1 (v, v, v), . . . , vTBnv + f 3,mn (v, v, v)

)
+ ε(ω, v),

(6)

where c ∈ Rn, A ∈ Mn,m(R), Bi ∈ Mm,m(R), i = 1,n. Without
loss of generality, we consider that each matrix Bi has an upper triangular
structure. The latter circumstance helps to simplify the numerical imple-
mentation of the MNC-algorithm (3). Also note that the vector-function
ε(ω, ·) : Rm

→ Rn satisfies (according to the functional term (2)) the
following qualitative estimate

‖ε(ω, v)‖Rn = o
((
v21 + . . . + v2m

) 3
2
)
.
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According to (1) in the case of k = 3 the considered PM-function of
tribological indicators (5) is twice continuously differentiable, that provides
(Banach 1972, p. 189) equality of mixed derivatives

∂2F(v1, . . . , vm)/∂vg∂vp = ∂2F(v1, ..., vm)/∂vp∂vg ∀g,p = 1,m. (7)

Therefore, in the solution of the optimization problem (4) for the 3-valued
model (6) the following statement 1 can be considered as the main result
according to Theorem 3 in (Kolmogorov and Fomin 1976, p. 505) and
Theorem 7.2.5 from (Kärger et al. 2005). But at first let us preliminarily
assume that

B∗i := (Bi + BTi ) ∈Mm,m(R), i = 1,n,

where Bi is the matrix of the system (6) (the matrix of the tensor f 2,mi in the
statement, when it is not considered in the system (1) as a symmetric one). In
addition, we consider the vector-function

v 7→ 8(v) : = (r1B∗1 + · · · + rnB∗n)
−1 (AT

+ [∇vf
3,m
1 (v, v, v), . . . ,∇vf 3,mn (v, v, v)]) r,

where ∇vf
3,m
i (v, v, v) is the gradient of the functional v 7→ f 3,mi (v, v, v).

Assertion 1. Stationary points of v∗ ∈ Rm of the problem (i) are the
solutions of the equation

v∗ + 8(v∗) = 0. (8)

A sufficient condition is that F(v∗) = max { F(v) : v ∈ Rm} is the require-
ment that v∗, as a stationary point of the functional (5), has an elliptic type.
In other words, at the point v∗ for the hessian G(v, r) of the functional (5),
the inequalities

det[bij]p < 0, p = 1,m, (9)

where [bij]p ∈Mp,p(R), p = 1,m are the main submatrices of the hessian

G(v∗, r) = r1
(
B∗1 + [∂2f 3,m1 (v, v, v)/∂vg∂vp|v∗]

)
+ . . .

+ rn
(
B∗n + [∂2f 3,mn (v, v, v)/∂vg∂vp|v∗]

)
∈Mm,m(R),

which is equivalent to the fact that the characteristic numbers λp(v∗, r) of the
matrix G(v∗, r) satisfy

λp(v∗, r) < 0, p = 1,m. (10)

Corollary 1. For the variant k = 2 the hessian of the functional (5) and
conditions (9), (10) are invariant to the position of the stationary point v∗,
the hessian is equal to

G(r) = r1B
∗

1 + . . . + rnB∗n,

which leads to the linear dependence of numbers λp(r), p = 1,m on the
normalization of the vector r.
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If rankG(r) = m then the solution of equation (8) is unique and has the
form

v∗ = −G−1(r)ATr,

which makes invariant the position of the point v∗ to the normalization of
the vector r.

According to the vector functions ∇vf
3,m
i (v, v, v) equation (8) is geome-

trically determined by intersection m quadrics (Kostrikin and Manin 1986,
p. 219). In the given statement (essentially geometrical) it is possible to carry
out such analysis on the basis of the fixed point principle (Kolmogorov and
Fomin 1976, p. 75). Then if inequalities (9) (or, equivalently, (10)) are not
fulfilled, that is at least one of them has an opposite sign, the stationary point
v∗ is hyperbolic (saddle point). On the other hand, the change of the inequa-
lity < to the reflexive one (i.e. rankG(v∗, r) < m) induces for v∗ the structure
of a parabolic point. Thus, in the case of a saddle point / parabolic point v∗

to ensure its elliptic character (10), a purposeful parametric correction of the
functional (5) is required. It is clear that such correction can shift the position
of the stationary point, i.e. after this correction a refinement recalculation is
required v∗ (by virtue of Corollary 1, this recalculation at k = 2 in turn does
not change the spectrum (10) of the Hessian G(r)).

One of the factors affecting the stationary point geometry v∗ of asser-
tion 1, is the digital adaptive parametric tuning r 7→ G(v∗, r), leading to the
fulfillment of elliptic conditions (9) or (10) the subject of the next section.

Parametric correction of the PM-functional on the r -parametric family of
its hessians.Consider statement (ii): for a stationary point of the optimization
problem (i) to construct a numerical procedure for the correction of the wei-
ght coefficients r ∈ Rn, assuming satisfaction of spectral conditions (10), i.e.
providing elliptic character of the stationary point of v∗ of statement 1. This
statement is actual in the optimization of v∗-parameters of the Cf-process,
when in some target PM-indicators wj should be optimized (i.e. rj < 0).
Note 2: Since conditions (9) (10) are algebraically equivalent, the use in

construction of the adaptive correction r 7→ G(v∗, r) expansion of determi-
nants (9) is almost inevitably doomed to failure (even by computer algebra
tools) due to a large number of terms determined by multivariate regression
coefficients.

The conditions of mathematical solvability of the problem similar to (ii)
can be obtained only in exceptional cases. In this connection below we shall
discuss an approach to this problem based on the ideas of the theory of loca-
lization and perturbation of eigenvalues (Kärger et al. 2005). Another useful
mathematical tool is the transformation of condition (10) for the problem
of “quadratic” stability by constructing a Lyapunov function (Polyak and
Shcherbakov 2002, p. 134) (see Conclusion below) in the affine family of hes-
sians of the optimization problem (i) on the grounds that this family depends
explicitly on variations of the vector coordinates due to the structure of the
function (5) r ∈ Rn.

Let a certain initial vector of r0 ∈ Rn of weighting coefficients from state-
ment (ii). For example, heuristic (in particular, neural network) choice of the
vector r0 can be chosen based on equality of its coordinates r0i, i = 1,n to
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values of some functions 9i : R→ R (having explicit physical context) that
depend on values of functionals Ji(v) := wi(ω + v), i = 1,n from auxi-
liary tasks of the optimal prediction of the PM-quality by individual target
tribological indicators wi. In particular, at the 2-valued regression model (1),
this position, according to corollary 2 from (Rusanov et al. 2012), will be
characterized by the following simple proposition.
Assertion 2. If the maximal valence of tensors k is two, then the vector of

r0 = col (r01, . . . , r0n) of initial weighting coefficients with coordinates

r0i = 9i(zi), zi = max
{
Ji(v): v ∈ Rm} , i = 1,n

has an analytical representation

r0 = col
(
91(c1 − eT1AB

−1
1 ATe1/2), . . . ,9n

(
cn − eTnAB

−1
n ATen/2

) )
,

where {ei} i = 1,n the canonical basis in R
n.

Let us define by v0 ∈ Rm some stationary point of the functional (5) in the
case when r-priority of sensing points is r0. Also byG0 ∈Mm,m(R) we denote
by the hessian of the given functional, calculated for the pair (r0, v0) and let

Gi := B∗i + [∂2f 3,mi (v, v, v)/∂vg∂vp|v0] , i = 1,n.

Then for the admissible linear variation 1r coordinates of the vector
r0 = col (r01, . . . , r0n) defined (by virtue of comments to formula (4)) by
the area of this variation W ⊂ Rn of the form

1r : = col (1r1, . . . ,1rn) ∈W,

ri = r0i + 1ri > 0, i = 1,n,

1r-parametric family of linear variations of the hessian G(v0, r0 + 1r) is
defined by a matrix m×m-multivariate of the form:

G0 +
∑

i=1,...,n

1riGi, 1r ∈W. (11)

By virtue of (7) the matrices of the family (11) are symmetric.
For the matrices of the manifold (11), the eigenvalues are characterized

as a series of optimization problems using the Courant-Fisher theorem (Kär-
ger et al. 2005). Also in the circle of analytic applications of this theorem lie
the reasoning of Weyl’s theorem (Trukhanov 2013) on the relations between
the characteristic numbers of the Hessian G0 and any matrix from the mani-
fold (11), allowing us to elucidate more transparently the geometric meaning
of the following constructions of the linear 1r-correction performed below

1r 7→ (r0 + 1r)Tw(ω + v)

of the target functional (5).
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Taking into account the introduced constructions, adaptive tuning of the
functional F(v) = rTw(ω + v) of tribological quality of the CHF pro-
cess, providing at variation of the vector r ∈ Rn at the stationary point, the
fulfillment of inequality (10) contains the following statement 3 below. In
essence, this statement is an uncomplicated modification (in the strong deri-
vative version dG(v0, r)/dr|r0) on the basis of Theorem 2 (Kolmogorov and
Fomin 1976, p. 491) and Theorem 4.1.3 (Kärger et al. 2005), which takes
into account the structure of manifold (11) as symmetric matrices.

Assertion 3. Let r = r0 + 1r,
{
(λp(r0), xp), p = 1,m

}
⊂ R × Rm is

the set of eigenpairs of the hessian G0, i.e. λp(r0) xp = G0xp, p = 1,m,
and let, based on the realization of the manifold (11), the numbers

gpi = xTpGixp/xTp xp, p = 1,m, i = 1,n.

Then the eigenvalues of λp(v0, r0 + 1r), p = 1,m of the hessian
G(v0, r0 + 1r) have the form

λ1(v0, r0 + 1r) = λ1(r0) +
∑

i=1,...,n g1i1ri + o ( ‖1r‖Rn) ,
.......................................................

λm(v0, r0 + 1r) = λm(r0) + i=1,...,ngmi1ri + o ( ‖1r‖Rn) .
(12)

The system (12) gives an estimation of the sensitivity of the hessian spe-
ctrumG(v0, r0 + 1r) to linear variations of1ri, i = 1,nweight coefficients.
For nonlinear variations one can refer to the recurrence formulas from (b)
(Kostrikin and Manin 1986, p. 154), which can be computed symbolically
by means of computer algebra. Of course, this analysis is approximate (it
is true for small ‖1r‖Rn). It is especially efficient for the 2-valued model at
n = m (this equality can be realized due to the relative variability of the
number of PM-indicators).
Corollary 2. Let k = 2, n = m, 3(r0) := col (λ1(r0), . . . , λm(r0)) is a

vector of characteristic numbers of the matrix (r01B∗1 + . . . + r0mB∗m)
u
{
xp
}
p = 1,m their respective eigenvectors. Moreover, let 3∗ := col(

λ∗1, . . . , λ
∗
m
)
some vector of characteristic numbers, “benchmark/sample” by

criterion (10), and B := [bpi]m×m-matrix with elements

bpi = xTpB
∗

i xp/x
T
p xp.

Then for r0 + 1r where the vector of variation has the representation
1r = B−1(3∗ − 3(r0)), the eigenvalues of the hessian G(r0 + 1r) will be

o (‖1r‖Rn)-close to the benchmark numbers
{
λ∗p

}
p=1,m

.

Remark 3. Since corollary 2 holds for small ‖1r‖Rm , it remains an open
question whether the iterative computational process will converge to

rj = (rj−1 + 1rj−1) ∈ Rm, j = 1, 2, . . . ,

constructed from the calculation 1rj−1 = B−1(3∗ − 3(rj−1)), if the initial
discrepancy ‖3∗ −3(r0)‖Rm is significant enough. Thus, according to the
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structure of the target functional (5), at each iteration step j for the vector
coordinates rj ∈ Rm should be carried out (within the physical setting of
problem (4)) the check of coordinate conditions rij > 0, i = 1,n.
Note 4: For adaptive systems, the normalization of input signals (in our

case
∥∥v(l)∥∥Rm < 1 in (3)) is essential (this is why adaptive techniques with lear-

ning are used). In this context, it is important to obtain (guarantee) sufficient
conditions for the adaptive system to have robust bounded solutions (Acker-
man 1993), with the very fact of existence of setting solutions satisfying these
properties being more important (see (2)) than their specific solutions. Thus,
a fixed parameter setting providing a qualitative (see (10)) v-control of the
predictive system (1), which is not very sensitive to the exact value of the
parameters, can give a range of possible values 1r, making it possible to
determine the optimal values v, guaranteeing the target PM-quality (4).

In the context of Remark 3, let us show the result of calculating the upper
estimate for the perturbation ‖1r‖Rm . To this end, let us assume that ‖•‖M
is the matrix norm in Mm,m(R), consistent with the norm in Euclidean space
‖•‖Rm , whereby ‖E‖M = 1, E ∈Mm,m(R) is a unit matrix. For example, the
Frobenius norm can serve in this capacity

‖D‖F := (m−1
∑

d2ij)
1
2 , D = [dij] ∈Mm,m(R),

or spectral (induced) matrix norm

‖D‖S := sup
{
‖Dx‖Rm : x ∈ Rm, ‖x‖Rm = 1

}
= max

1≤i≤m
λ

1
2
i (D

TD).

Let us return to corollary 2: we have B 1r = 3 − 3(r0), det B 6= 0.
Suppose that the vector of characteristic numbers 3∗ −3(r0) is transformed
to the perturbed vector 3∗ − 3(r0) + δ (in particular, due to the terms of
o (‖1r‖)Rm of system (12)), and the matrix B is transformed to B + D. In
this case the vector 1r will obtain (taking into account the modification of
consequence 2) some increment θ , transforming to the value of1r + θ which
then will satisfy the following linear algebraic equation

(B + D)(1r + θ ) = 3∗ −3(r0) + δ.

In this case δ ∈ Rm, D ∈ Mm,m(R) model the perturbations of the vector
3∗ − 3(r0), as well as the inaccuracy of the parametric estimation of the
matrix B (if ‖D‖M

∥∥B−1∥∥M < 1, then ‖D‖M < ‖B‖M; see. (Lancaster
1982, p. 197)). Then the calculation of the upper estimate of perturbation
‖θ‖Rm / ‖1r‖Rm yields corollary 3. For details of the accompanying (par-
tly routine) calculations using the construction of the conditional number
matrix see the popular (among graduate students) monograph (Lancaster
1982, p. 197).
Corollary 3. Let the assumptions of corollary 2 be supplemented by

s(B) := ‖B‖M
∥∥B−1∥∥M the conditional number of the matrix B where ‖•‖M
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is the norm ‖•‖F or ‖•‖S. Then the estimation for θ , 1r

‖θ‖Rm / ‖1r‖Rm s(B)(1− s(B) ‖D‖M / ‖B‖M)−1(
‖δ‖Rm /

∥∥3∗ −3(r0)∥∥Rm + ‖D‖M / ‖B‖M) .
If ‖•‖M = ‖•‖S u λ1, λm are, respectively, the smallest and the largest

eigenvalues of the matrix BTB, then in the last inequality we can assume

s(B) = (λm/λ1)
1
2 .

Remark 5. The construction of the conditional number s(B) = (λm/λ1)
1
2

obtained using the spectral norm ‖•‖S, is transparent due to equality
s(B) = ‖B‖S

∥∥B−1∥∥S.
An alternative to accounting for interference, not only covered by corol-

lary 3, may be approaches, including those involving deep penetration (by
means of graphical analysis from works (Rusanov et al. 2014; 2012b)) into
the physical content of the subject of nonlinear CF modeling.

CONCLUSION

The purpose of this paper was to develop the analytical results of (Rusanov
et al. 2012a) by pointing out the geometrical relation between the problem of
determining the value of the matrix hessian function at the stationary point
of the target functional (5) and the vector r of weighting coefficients in (5),
reflecting the priority between wi modeled predictions of the target tribolo-
gical PM indicators. In this context, statement 1 and its corollary 1 show
that, unlike the 3-valued in the 2-valued tensor-regression model, the hessian
G(v, r) is invariant to the position of the stationary point. In this case, both
variants allow us to reveal r-dependence of the hessian spectrum G(v, r) on
the basis of a nonlinear multivariate regression PM model for the CFF mode
of hardening of composite metal coatings identified within the framework of
the LMS problem (II).

Statement 3 essentially asked: what can be said about the eigenvalues of the
matrix G0 +

∑
1riGi if each variation 1ri is a small parameter? Thus, we

were interested only in the purely formal aspect of the mathematical mode-
ling problem under study, when we do not consider what should be the real
value of the increment 1ri for the term “small parameter” to be really appli-
cable. In this case the result of statement 3 is based on the assumption that
eigenvalues (10) smoothly r-depend on the elements of the hessian G(v, r)
during the current parametric r-correction of the target functional (5). How-
ever, it should be noted that some (essentially geometric) information is lost in
the simulation process when dealing only with the characteristic polynomial,
since there are many different matrices with a given characteristic polyno-
mial. Therefore it is not surprising that the stronger results on modeling the
hessian spectrum G(v, r), in particular, statement 3 and corollary 2 take into
account the structure ofG(v, r). The latter allow for technical simplifications
by means of specialized computer algebra, based on the geometric position
that any hessian matrix is orthogonally similar (Kärger et al. 2005) to a real
diagonal matrix.
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Numerical methods for finding eigenvalues and eigenvectors represent one
of the most important sections of general matrix theory. Previously, no aspect
of this topic has been touched upon in the analysis of the vector 3∗ −3(r0)
and the matrix B from consequence 2, but consequence 3 gives an upper
bound on the perturbation 1r through the relative perturbations 3∗−3(r0),
B and the conditional number s(B). Then s(B) is involved in the evaluation
in all cases, whether the perturbations occur only in 3∗ − 3(r0), only in B,
or in 3∗ −3(r0) Ð¸ B simultaneously.

Finally, we define another approach (essentially cybernetic) in the adaptive
correction r 7→ rTw(ω + v), which is related to the use of sufficient robust sta-
bility conditions for the 2-valued model of the matrix G(r), which also leads
to conditions (10). In this context, it is necessary that with interval tolerances
on the vector coordinates r it is possible to construct the Lyapunov function
V(x) = xTp Pxp, where P ∈Mm,m(R) is a symmetric positively defined matrix,
for the latter, the Lyapunov equationG(r)P + PG(r) = −Q has a solution at
a given symmetric positive-defined m ×m-matrix Q. The transition to ada-
ptive robust quadratic stability (Polyak and Shcherbakov 2002) and methods
for its solution are also proposed in (Ackerman 1993; Kreinovich et al. 1998).
This theory, due to the abundance of computational problems available in it
and the opportunities it opens for applications of nonlinear multidimensio-
nal tensor-regressive analysis, can acquire great (extended) importance in the
problems of precision multifactor nonlinear optimization of CP hardening
processes of complex composite metal coatings and alloys.
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