Intelligent Human Systems Integration (IHSI 2023), Vol. 69, 2023, 869-879 AH FE
https://doi.org/10.54941/ahfe1002912 |nternational

Safe and Flexible Planning of
Collaborative Assembly Processes Using
Behavior Trees and Computer Vision

Minh Trinh?, David Kotter?, Ariane Chu', Mohamed Behery?,
Gerhard Lakemeyer?, Oliver Petrovic!, and Christian Brecher!

TLaboratory for Machine Tools and Production Engineering, RWTH Aachen University,
Aachen, Germany
2Knowledge-Based Systems Group, RWTH Aachen University, Aachen, Germany

ABSTRACT

Human-robot collaboration combines the strengths of humans, such as flexibility and
dexterity, as well as the precision and efficiency of the cobot. However, small and
medium-sized businesses (SMBs) often lack the expertise to plan and execute e.g. col-
laborative assembly processes, which still highly depend on manual work. For SMBs
to benefit from automation and become more resilient to global competition, this
paper introduces a framework using behavior trees (BTs) and computer vision (CV)
to simplify the process while complying with safety standards. A speed separation
and monitoring (SSM) system is developed, which detects the human hand using a
CV algorithm. This system is integrated into a BT (in form of a subtree), which plans
and executes the cobot’s actions. Finally, the overall framework is validated with the
safety regulations defined in the DIN ISO/TS 15066.

Keywords: Human-robot-collaboration, Behavior trees, Computer vision

INTRODUCTION AND BACKGROUND

Human-robot collaboration (HRC) is gaining popularity in many industrial
domains such as manufacturing and assembly. HRC processes are usually
safety critical due to the close interaction between cobots and humans. How-
ever, programming cobots for such tasks requires trial and error and a lot
of fine tuning. Behavior trees (BTs) were introduced to robot programming
offering flexibility and modularity which helps in code reuse.

BTs organize the behavior of a system in a tree structure consisting of
nodes that are propagated by ticks (Iovino et al., 2022; Colledanchise and
Ogren, 2018). BTs are modular since nodes or subtrees can be easily added
or removed. Condition nodes check if a certain condition holds before an
action node is executed, which leads to the reactivity of the trees. Nodes
can be executed in sequence or parallel and return RUNNING, SUCCESS
or FAILURE depending on their state. Selector nodes tick their subsequent
nodes (children) until one returns RUNNING or SUCCESS. Finally, decora-
tors are user-defined nodes. BTs are intuitive and human-understandable and
can therefore be used by non-experts (Olsson et al., 2016).

© 2023. Published by AHFE Open Access. All rights reserved. 869

https://doi.org/10.54941/ahfe1002912

870 Trinh et al.

In earlier works, BTs have been introduced for planning and execution of
a collaborative assembly process (Baier et al., 2022). Furthermore, an exten-
sion for an efficient task sharing and communication between human and
cobots was proposed in (Behery et al., 2021) using the Human Action Nodes
(H-nodes). The H-node is crucial for BTs to handle collaborative tasks and
reducing idle times. This node requires the use of computer vision (CV) for
the cobot to recognize, whether the human has finished her sub-task and
continue with the next one. In order to do so, the algorithm must be able
to detect different assembly states and map them to the corresponding tree
nodes. A further use of CV is the detection of assembly parts such as screws.
This enables the cobot to recognize and handle specific components.

Collaboration is the highest level of interaction between humans and
cobots (Baier et al., 2022) due to a shared workspace and task. Therefore,
it requires strict safety standards that are determined in the DIN EN ISO
10218 (DIN, 2012) and DIN ISO/TS 15066 (ISO, 2017). The latter defi-
nes safety function such as speed and separation monitoring (SSM), which
specifies a minimum protective distance between human and cobot and the-
refore preventing collisions. The internal safety functions of cobots have been
successfully extended with sensors, cameras, and CV algorithms (Scimmi
et al., 2021; Kumar et al., 2019; Xu et al., 2015) to avoid collisions with
the human. The latter approach uses the object detection library OpenCV
(Bradski, 2000), for instance. OpenCV offers a hand detection algorithm,
which is pretrained with more than 30.000 images of hands. In addition, it
allows for a high frame rate, which is essential for real-time safety. Paxton
et al. introduced CoSTAR a system and graphical user interface using BTs
and vision for collaborative robots (Paxton et al., 2016). We further improve
this concept by focusing on safety for collaborative processes.

In this paper, CV is used to enhance the CoboTrees (cobots and BTs)
demonstrator within the Cluster of Excellence ‘Internet of Production’ (Pen-
nekamp et al., 2019). The demonstrator consists of a six degree-of-freedom
Doosan M1013 cobot, which is controlled by the ROS Operating System
(ROS) running on a notebook with CPU and two Intel RealSense D435 depth
cameras. The BTs are modelled using the py_trees library!. Since most acci-
dents between robots and humans occur due to clamping or crushing of the
human hand (Haddadin, 2014), the OpenCV hand detector and SSM are
implemented in a safety subtree. This method is evaluated regarding its com-
pliance with existing safety standards and using an example assembly case.
The CoboTrees demonstrator as well as the lamp to be assembled are shown
Figure 1.

DESIGN, IMPLEMENTATION AND INTEGRATION

This section describes the design, implementation, and integration of the CV-
based SSM system in ROS using a BT for an assembly process. This system
is designed in order to comply with the DIN ISO/TS 15066.

Thttps://github.com/splintered-reality/py_trees

Safe and Flexible Planning of Collaborative Assembly Processes Using Behavior Trees 871

Topic: DetSction fsafety.
© g m—— Algo + P FE——
fcam_1 node_1/
= Trafo (1) 7
results
Detection fsafety.
fcam_2 . Algo.t node_zIr ‘“!
Trafo (2) H
results !
I Safety i
subtree

Distance
computation
Setspeed

...... > Subscribe Get coordinates

— Publish

Robot
control

Figure 2: System design of the ROS setup.

Design Overview of the Speed and Separation Monitoring System

Figure 2 shows the system design of the ROS setup with two integrated Intel
RealSense cameras that publish RGB images under the respective topics. A
subsequent detection algorithm and transformation module subscribes to the
respective camera topic. The module uses the OpenCV hand detection algo-
rithm to detect a human hand and the coordinates of its middle key point.
This algorithm is pretrained with mediapipe hand images (Lugaresi et al.,
2019). Since the coordinates of the hand are defined in the camera coor-
dinate system, a transformation from the camera coordinate system to the
robot coordinate system follows. The module publishes the coordinates of
the hand. The distance computation module subscribes to the latter topic and
computes the shortest distance from the middle key point of the hand to the
cobot. Depending on the distance, the speed of the cobot is controlled. Three
different modes for the speed are implemented: full speed, slow speed, and
stop (zero velocity). In addition, a blackboard is used, which holds variables
and values relevant to the cobot.

872 Trinh et al.

o >
9 Sequence /\

Assembly
I)
? Selector = PIOCESS

.-"""-/_6 o n‘l_paat_é_”""‘_l Resume
“__distance speed
Resume Stop
speed execution
— =N
(Slow b Slow down
x_cj own ’f____,,-/

Figure 3: Behavior tree of an assembly process with an integrated safety subtree (in
blue).

A safety subtree must be designed and integrated to the main BT, which
designs the respective task. The BT for the assembly of the lamp in Figure 1
is shown in (Baier et al., 2022). With every tick the safety subtree checks
if a hand is close to the cobot. Furthermore, it checks if a hand is in the
environment before the cobot starts moving. Figure 3 shows the assembly
BT with the safety subtree.

In Figure 3, using a selector node ensures, that its children are ticked from
left to right, until one of them returns success. The distance computation
module always returns failure to ensure, the speed of the cobot is set to
the correct value afterwards. The condition nodes return running (which is
turned into failure) unless one of the conditions is true. If one of the condi-
tions is true, the respective action is carried out. The condition node returns
success and the safety subtree itself returns success. Furthermore, the stop-
ping module is further left than the one for slowing down. This underlines
that stopping the cobot is more important than slowing down, which is itself
more important than setting the speed to normal level.

Camera Integration

Figure 4 shows the positions of the two cameras and their field of view in
relation to the coordinate system of the robot. The cameras are installed in
parallel to the cobot’s workspace to detect hand in two-dimensional space.
They are installed 1250 mm above the ground of the cobot’s workspace. The-
refore, both cameras have a recording range of 1320 mm in the direction of
the x-coordinate and 1000 mm in y-direction. They are arranged in a way that

Safe and Flexible Planning of Collaborative Assembly Processes Using Behavior Trees 873

- Position of camera 1
1320 570

l 7 —) N Position of camera 2
& ~p1oo

| = e kot e - . .
oo 2] e Field of view camera 1

Field of view camera 2

1000
.
.
<
i

Robot workcell

hao

T
1320 130

Figure 4: Position of the cameras, the cobot and their coordinate systems.

ensures a view throughout the whole length of the workspace and to maxi-
mize coverage. This is necessary, because depending on the cobot and hand
position, the cobot may block the hand out of the camera’s view. The recor-
ding area of the cameras starts 140 mm in front the work cell of the cobot.
The image from camera 1 as well as the image from camera 2 are converted
from an RGB image into a BGR image, since OpenCV follows BGR order,
whereas the Intel RealSense camera outputs the image as an RGB image. For
this task, the CvBridge? is used.

Detection Algorithm and Transformation

The purpose of the detection algorithm and transformation module is to find
the hand in the image provided by the camera, determine the middle key point
of the hand and transform the coordinates of that point from the camera
coordinate system into the robot coordinate system. If the detection algori-
thm does not find a hand in the image, it publishes 999 for the x and 999 for
the y-coordinate of the hand middle point. In this way, the computed dista-
nce between the cobot and the middle point of the hand is big enough for
any possible position of the cobot to not stop or slow down the cobot. If the
OpenCV hand detection algorithm detects a hand in the provided image, the
location of the 21 key points of the hand are determined. There is a trade-
off between accuracy and computation speed. To reduce the computational
cost, we only use the hand’s middle key point to calculate the distance betw-
een the hand (middle point) and the cobot. The missing distance of the hand
is considered as a constant added value (taken from a male experimentee,
denoted H (tp) in Figure 5). If the algorithm finds a hand in the image, a
computation is performed to transform the output of the detection algorithm
from the camera coordinate system into the robot coordinate system with the
length scale of millimeters. The transformation from pixels into millimeters in
x-direction is done by multiplying the output from the middle hand key point
with the maximum viewing distance of the camera in x-direction divided by
the number of pixels in x-direction.

DISTANCE COMPUTATION

With every tick of the BT, the distance computation module computes the
distance between the hand and the cobot. Therefore, it uses an access function

2http://wiki.ros.org/cv_bridge

874 Trinh et al.

Figure 5: Visualization of H(tg) and T(tg).

to get the coordinates of the cobot position. Furthermore, it gets the coordina-
tes of the hand middle point. If camera 2 does not detect a hand, the distance
computation module computes the shortest distance between the cobot and
the coordinates of the hand detected by camera 1. If camera 1 does not detect
a hand, the action distance computation computes the shortest distance betw-
een the hand middle key point and the cobot with the estimated hand middle
key point position from camera 2. If both cameras detect hands, the distance
is set according to the minimum computed value. Afterwards, the computed
distance is written to the blackboard to check if the cobot can move with full,
slow, or zero speed. The distance computation node always returns FAILURE,
to ensure the selector node ticks its other children.

Speed Control

There are six different parameters in the designed and implemented safety
algorithms:

. dist_stop: If the distance between the middle key point of the hand and
the robot is smaller than dist_stop [m], the robot stops its movement.

o dist_slow: If the distance between the middle key point of the hand and
the robot is smaller than dist_slow [m] but bigger than dist_stop, the robot
slows down.

. set_speed: Set the speed to set_speed [m/s] if no hands are detected or the
distance between the robot and the hand middle key point is larger than
dist_stop.

« Slow_speed: The parameter slow_speed can be changed to any real num-
ber between zero and one. If the distance between the middle key point of
the hand and the robot is smaller than dist_slow but bigger than dist_stop,
the robot moves with slow_speed x set_speed.

To ensure the condition nodes return either SUCCESS or FAILURE, a deco-
rator node is used prior to each condition node. In this way, none of the
condition nodes returns RUNNING and the BT does not block. There are
three different possibilities for the computed distance. First, if the computed
distance is smaller than dist_stop, the robot is stopped and the node returns

Safe and Flexible Planning of Collaborative Assembly Processes Using Behavior Trees 875

Speed Stop triggered Stopping finished v, v, Speedofthe robot
Beginning of stoppi s
T v ST v, Speed of the worker
5,(t,) Safetydistance at
start time ¢,
v Tr Response time
s T, Stopping time
Vp
H Penetration
i distance and
» ! uncertainty R
i Time
Distance
r-9
S()
SP (tﬂ) = f(ver'l Up, TR,TS,R}
Spyow = Sp(to) + T(te) + H(tg)
P
SP(tO) = f(vrivhi TR + TS'R)
t LtT, o+ THTs Time

Figure 6: Safety distance and its components according to (ISO, 2017).

SUCCESS. Therefore, the sequence node stops ticking its children. Second, if
the computed distance is smaller than dist_slow, but bigger than dist_stop,
the first condition node returns FAILURE since its condition is not met. The
second condition is true and therefore, the speed is set to slow speed. More-
over, the second condition node returns SUCCESS. Therefore, the sequence
node returns SUCCESS as well and the cobot continues with slow speed.
And thirdly, if the computed distance is bigger than dist_slow, the first and
the second conditions are not met. Therefore, both condition nodes return
FAILURE. The third condition is true and returns SUCCESS. Therefore, the
cobot resumes at full speed.

Compliance With DIN ISO/TS 15066

Figure 6 shows a graphical representation and calculation of the safety
distance Sp(#p) at time #p and its components according to (ISO, 2017). To
determine the response and stopping time Tg and T the cobot needs to move
with 33 %, 66 % and 100 % of the total payload, whereas the maximum
value of the measurements must be used. v, is the directed speed of the cobot
towards the worker and v; the speed of the cobot from getting the stopping
signal to the actual stop. The original equation for Sp(#p) does not consider
the length of the tool from the end of the cobot to the TCP. Furthermore,
the CV algorithm returns the central point of the hand, which means another
value for the distance from the central point of the hand to the biggest extend
of the hand must be added as well. Sp ¢, shows the modified equation. Here,
T (2p) is the distance from the TCP to the biggest extend of the tool and H ()
is the distance of the biggest extend from the middle of the hand to the end
of the hand as shown in Figure S.

876 Trinh et al.

To ensure the workers integrity in any situation, an optimization for the
worst case is conducted, leading to the assumption that vs (f) = v, (¢) and
T = Ts + T,, which is the time the system needs to detect a hand in the
workspace of the cobot, to send the stopping signal and to stop the cobot. The
variable T is determined as follows: the dist_stop variable is set to 990, which
means as soon as a hand is detected by one or both cameras, the SSM system
sends a stop signal and stops the cobot. To measure the exact time between
moving the hand into the recording area and the stop of the cobot, the hand
is held as close as possible to the recording area. The cobot must be loaded
with 33 %, 66 % and 100 % of the maximum payload while determining T
and T, (T respectively). For each payload, 24 measurements are conducted
with different positions of the cobot. In each of the 24 measurements, the
hand is moved eight times in the recording area of camera one, eight times in
the viewing area of camera two and eight times in the recording area of both
cameras. As a result, T does not exceed 1.1 s. Therefore, T is set to 1.1 s.

Furthermore, the maximum speed of the cobot can be set to 1 m2/s. The-
refore, v, is set to 1 m/s. A measurement of the distance between the factory
TCP and the TCP shows, T_max is 148 mm.

EVALUATION

To evaluate the implemented algorithms, a hand moves with different speeds
and gestures into the work cell of the cobot. A high-speed camera records the
movement of the hand in front of a measuring tape. Afterwards, the recording
is rewatched to determine the distance in which the cobot stops/slows down
as accurately as possible. The hand speed is monitored with a smartwatch.
Throughout the experiments, a deviation up to 10% from the defined hand
speed is allowed. Furthermore, the cobot moves only in z-direction to simplify
the distance measurement. The results should therefore be re-evaluated in
the future for more complex movements. Four different hand gestures are
evaluated (see Figure 7): flat hand (slow/stop), fist (slow), grab (slow) and
upside-down (slow).

The experiments with a flat hand are conducted with three different hand
speeds (0.1 m/s, 0.3 m/s, 0.5 m/s). Other gestures are evaluated with a speed
of 0.1 m/s. For each gesture and speed, 24 tries are conducted. Throughout
the experiment, dist_slow is set to 800 mm. The experiments with a flat hand
are also evaluated for the stop of the cobot (dist_stop = 400mm). Further-
more, the same gestures are evaluated with a working glove. In all attempts,
the shortest distance between the cobot and the closest point of the hand to
the cobot is measured.

The distance between the closest point of the hand to the cobot is measured
and represented in boxplot diagrams. Figure 7 top left shows the results for
the slowing down distance with different speeds and a flat hand. The exact
hand gesture is shown in the corner on the upper right side. Figure 7 top right
shows the results of the distance in which the cobot stops. The results for
both evaluations are measured in the same experiment. First, the cobot slows
down and afterwards, the cobot stops if the distance falls below 400 mm
(dist_stop). With a hand speed of 0.3 m/s, the stop fails two times. With a

Safe and Flexible Planning of Collaborative Assembly Processes Using Behavior Trees 877

'§'700 _300
£ W
2 2200
E 500 g
o o
s ©
c
g 300 £100
o
g a
5 9
] w
? 100 0 : _
0.1 0.3 0.5 0.1 0.3 05
Hand speed[m/s] Hand speed[m/s]

500

Slowdown distance [mm]

400

av v

Figure 7: Distance for slowdown or stopping of cobot depending on hand gesture.

hand speed of 0.5 m/s, the stop fails 13/24 times. Figure 7 bottom shows
the boxplot diagram of the distance in which the cobot slows down with
different hand gestures. The algorithm was not able to detect a hand wearing
working gloves, therefore, these results are omitted. In 13/24 tries for each
gesture, the algorithm fails to detect a hand.

Depending on the parameters dist_stop and dist_slow, a reliable system
for different hand speed can be obtained. The question is, if the value of the
parameters is small enough to allow real collaboration between the human
being and the cobot. Most CV algorithms are designed to run on a server
GPU and not on a CPU from a laptop. The slow frame rate of 10 fps leads
to a high value for dist_stop to satisfy the DIN ISO 15066. Therefore, no
real collaboration between the robot and the worker is possible. For the use
case of collaborative assembly of a lamp, the stopping distance is set to zero
and the slowing distance is set to 0.6 7. This way, even if the worker moves
fast towards the cobot, it slows down at least 10 #m before the worker hits
the cobot. When the hand of the worker moves away from the light stand to
grab the next screw to be fastened, the cobot accelerates to full speed.

CONCLUSION AND OUTLOOK

In this paper an SSM system was developed to decrease hand related accidents
during human-robot-collaboration. As control architecture, a BT is chosen

878 Trinh et al.

due to its modularity and reactivity. The system is designed in a generic way
to ensure an easy integration of other body parts, detection algorithms and/or
cameras at a later stage. Two Intel RealSense cameras are added to the exi-
sting robot environment to track the hand position. For the hand detection,
an algorithm from OpenCV pretrained with mediapipe hand images is used.
The model for hand detection is embedded into an existing BT/ROS framew-
ork. A safety subtree is implemented using py_trees. The distance is computed
between the middle hand key point and the factory TCP of cobot. The mis-
sing distances for the fingers and the tool are added as constants to the safety
distances. Furthermore, this research conducted a quick way to get a conse-
rvative estimation of the stopping distance to meet the guidelines from the
European Union.

The designed algorithms can support an existing safety strategy. The use
case shows that the designed SSM system improves the safety of a human
during HRC. However, due to the use of a CPU only high values for the stop-
ping distance are achieved that do not allow for real collaboration. Therefore,
a GPU will be used in the future. Furthermore, experiments will be condu-
cted for 3-dimensional detection of the whole human body. In addition, other
cameras and CV algorithms can be tested and evaluated. The distance com-
putation node will be extended to cover the whole cobot, not only its end
effector. The CV module will be extended for detection of the assembly pro-
duct as well as assembly states, used by the H-nodes for efficient task sharing
and communication between human and cobot.

ACKNOWLEDGMENT

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy — EXC-2023 Internet of
Production — 390621612.

REFERENCES

Baier, R. et al. (2022) ‘A Framework for the Classification of Human-Robot Intera-
ctions Within the Internet of Production’, in Kurosu, M. (ed) Human-Computer
Interaction. Technological Innovation, Cham, Springer International Publishing,
pp. 427-454.

Behery, M., Trinh, M. and Lakemeyer, G. (2021) ‘Human Action Nodes for Beha-
vior Trees’, Proceedings of the workshop Robotics for People — Perspectives on
Interaction, Learning and Safety.

Bradski, G. (2000) “The OpenCV Library’, Dr. Dobb’s Journal of Software Tools.

Colledanchise, M. and Ogren, P. (2018) Behavior Trees in Robotics and Al, CRC
Press.

DIN (2012): DIN EN ISO 10218-1:2011 Industrieroboter — Sicherbeitsanforderun-
gen, Teil 1: Roboter (ISO 10218-1:2011).

Haddadin, S. (2014) Towards Safe Robots: Approaching Asimov’s 1st Law, Berlin,
Heidelberg, Springer.

Iovino, M., Scukins, E., Styrud, J., Ogren, P. and Smith, C. (2022) ‘A survey of Beh-
avior Trees in robotics and AD’, Robotics and Autonomous Systems, vol. 154,
p. 104096.

Safe and Flexible Planning of Collaborative Assembly Processes Using Behavior Trees 879

ISO (2017): ISO/TS 15066:2016-02. Robots and robotic devices - Collaborative
robots.

Kumar, S., Arora, S. and Sahin, F. (2019) Speed and Separation Monitoring using
on-robot Time--of--Flight laser--ranging sensor arrays.

Lugaresi, C. et al. (2019) MediaPipe: A Framework for Building Perception Pipelines
[Online]. Available at http://arxiv.org/pdf/1906.08172v1.

Paxton, C., Hundt, A., Jonathan, E, Guerin, K. and Hager, G. D. (2016) CoSTAR:
Instructing Collaborative Robots with Bebhavior Trees and Vision.

Pennekamp, J. et al. (2019) ‘Towards an Infrastructure Enabling the Internet of
Production’, 2019 IEEE International Conference on Industrial Cyber Physical
Systems (ICPS). Taipei, Taiwan, 06.05.2019 - 09.05.2019, IEEE, pp. 31-37.

Scimmi, L. S., Melchiorre, M., Troise, M., Mauro, S. and Pastorelli, S. (2021) ‘A
Practical and Effective Layout for a Safe Human-Robot Collaborative Assembly
Task’, Applied Sciences, vol. 11, no. 4, p. 1763.

Xu, D., Wu, X., Chen, Y.-L. and Xu, Y. (2015) ‘Online Dynamic Gesture Recognition
for Human Robot Interaction’, Journal of Intelligent & Robotic Systems, vol. 77,
3-4, pp. 583-596.

	Safe and Flexible Planning of Collaborative Assembly Processes Using Behavior Trees and Computer Vision
	INTRODUCTION AND BACKGROUND
	DESIGN, IMPLEMENTATION AND INTEGRATION
	Design Overview of the Speed and Separation Monitoring System
	Camera Integration
	Detection Algorithm and Transformation

	DISTANCE COMPUTATION
	Speed Control
	Compliance With DIN ISO/TS 15066

	EVALUATION
	CONCLUSION AND OUTLOOK
	ACKNOWLEDGMENT

