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ABSTRACT

Digitized photographs are commonly employed by archaeologists to assist in unco-
vering ancient artefacts. However, locating a specific image within a vast collection
remains a significant obstacle. The metadata associated with images is often sparse,
marking keyword-based searches difficult. In this paper, we propose a new visual
search method to improve retrieval performance by utilizing visual descriptors gene-
rated from a feature pyramid network. This network is a convolutional neural network
(CNN) model that incorporates additional modules for feature extraction and enha-
ncement. The first module encodes an image into regional features through spatial
pyramid pooling, while the second module emphasizes distinctive spatial features.
Additionally, we introduce a two-stage feature attention to enhance feature quality
and a compact descriptor is then formed by aggregating these features for search-
ing the image. We tested our proposed method on benchmark datasets and a public
vast collection of Thailand’s ancient artefacts. Results from our experiments show that
the proposed method achieves 77.9% of mean average precision, which outperforms
existing CNN-based visual descriptors.

Keywords: Image retrieval, Pyramid attention, Image representation, Convolutional neural
network

INTRODUCTION

An archaeologist studies human cultures and societies by uncovering and
examining various artifacts such as stone, pottery, metal, and wood. They
use this information to gain a deeper understanding of human experience.
The most task of the practitioners is to properly identify and determine the
age and culture of the artifacts they uncover. To do this, they rely on their
prior knowledge, expertise and preference for certain visual characteristics.
This process often involves searching through several thousands of artifact
images in archaeological archives.

To facilitate the particular task, image retrieval technology can assist by
allowing the archaeologists for searching related images in response to a
query image. Content-based image retrieval (CBIR) (Hameed et al. 2021),
aiming to search for relevant images in an image collection, given a query
image, has gained much attention as a search tool in many applications, such
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as online produce searching, remote sensing, and landmark retrieval. Previ-
ous studies were made to apply CBIR in archeology (Díez-Pastor et al. 2018;
Eramian et al. 2017; Kwan et al. 2011). However, these works rely on hand-
crafted feature extraction like SIFT (Lowe, D. G. 2004) and VLAD (Jégou
et al. 2011) for image representation and utilizing machine learning for sea-
rching objects of interest. Recently, Convolutional Neural Networks (CNNs)
(Rawat and Wang 2017) have recently been successfully applied to a vari-
ety of computer vision tasks. These networks, which are commonly used for
image analysis, can automatically learn features from input images and use
these features to accurately classify and infer useful information from the
data. The benefits of CNN-based features are their strong generalization as
well as capturing the semantic meaning of image pixels.

Recently, CNNs have demonstrated potential in archaeology such as reco-
gnizing pottery (Gualandi et al. 2021), dating ancient stones (Grove and
Blinkhorn 2020) and identifying bone surfaces (Domínguez-Rodrigo et al.
2020). However, these studies tend to focus on specific scenarios, limiting
their ability to handle the diversity of cultural heritage. The diverse culture
of artefacts presents significant challenges for image retrieval. First, physi-
cally similar artefacts can come from different cultures, while distinct-looking
artefacts can be from the same culture. Additionally, poor artefact conditi-
ons and image quality variations often pose challenges for feature extraction.
Moreover, lack of training images due to the scarcity of specific artefacts can
hinder CNNs. These challenges requires a specialized solution for retrieval
in culture heritage.

In this paper, we propose a new CNN-based retrieval model for sea-
rching the diversity of archeological artefacts. The model uses a feature
pyramid network that is designed to extract a compact and discriminative
image descriptor. The proposed approach incorporate additional modules
for feature extraction and aggregation. First, Spatial Pyramid Pooling (SPP)
(He et al. 2015) is used to encode any size of image to obtain spatial infor-
mation of artifacts. After that, an attention mechanism is applied to focus
informative regions of the features. Then, these regional features are aggre-
gated to produce a compact visual descriptor. To identify artefacts by types,
periods and cultures, the CNN network is trained using online triplet mining
and triplet loss. The effectiveness of the proposed approach is evaluated using
a publicly available repository of digital artefact images from the Department
of Fine Arts Thailand, which contains archeological items from thousands of
years of Thai art history.

ARTEFACT DATASET

The dataset is publicly accessible on Suvannaphumi Cultural Information
Center (CRMA) website: (https://research.crma.ac.th/). It consists of 240,933
images of 34,934 artefacts found in Thailand, covering the period from the
7th century to the 21st century. These artefacts were crafted from 14 different
materials and are mainly categorized into 8 types, 4 periods (in AD centuries)
and 10 culture backgrounds, provided by archaeologists. Table 1 shows these
artefact attributes.

https://research.crma.ac.th/
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Table 1. Attributes of artefacts in the dataset.

Attribute Value

Material Wood; Fabric; Bone; Metal; Glass; Sculpture; Stone;
Painting; Carving; Leather; Gold; Silver; Copper; Bronze

Culture backgrounds Pre-history; Dhavaravati; Sriwijaya, Lopburi, Lan-Na;
Sukhothai; Ayutthaya; Rattanakosin

Period 1st to 5th centuries AD; 6th to 10th centuries AD; 11st to 15th

centuries AD; 16th to 21st centuries AD
Type Jewellery; Architecture, Costumes; Coins and banknotes;

Stone inscription,; Sculpture; Pottery; Tools

Figure 1: Samples of images by types and cultures (periods in century AD) in the
dataset.

We group the artefacts into 3,360 classes based on their type, material,
culture and period. In order to maintain a balanced dataset, we choose the
200 largest classes, encompassing a total of 40,912 images of 5,138 artefacts.
After that we split the dataset into 80% for training (32,730 images) and 20%
for validation (8,182 images). Figure 1 shows examples of artefact images
categorized by their type and culture backgrounds.

NETWORK ARCHITECTURE

Figure 2 illustrates the proposed approach, named pyramid attention netw-
ork. This network basically consists of a base CNN and two additional
modules: spatial-pyramid pooling and attention mechanism. The spatial
pyramid pooling is adopted to generate local features from activations of the



Visual Instance Retrieval for Cultural Heritage Artefacts 91

Figure 2: Illustration of the proposed pyramid attention network.

last convolutional layer in the base network. After that, the attention mecha-
nism is employed to enhance the extracted features based on their informative
region. Finally, these regional features are aggregated using sum pooling to
obtain a global descriptor.

Multi-Scale Feature Extraction

Convolutional neural networks typically require a fixed-size input image
(e.g., 224× 224) for the fully-connected layer, which may limit the accuracy
of image classification. Spatial pyramid pooling (SPP) was introduced in (He
et al. 2015) as a solution to this issue, by adding it on the top of the last convo-
lutional layer. In other words, SPP enables to generate fixed-length outputs
from feature maps of images of any size. In recent studies, SPP has been shown
to improve the generalization of models for tasks, including object detection
and semantic segmentation. In this study, we leverage the pyramid pooling
to aggregate multi-scale regions in a feature map. However, different from
conventional pyramid pooling that applies max pooling on non-overlapping
regions in the input map, we adopt overlapping max pooling that performs
better in term of spatial invariance. Given the convolutional feature maps:
W×H×D, whereW×H is the size of input map andD is the number of chan-
nels, the pyramid pooling has a pooling window size in proposition to the size
of feature map. For a given scale n that generates the output size of n×n×D,

we apply a pooling window size of
[⌈

2× ( W
n + 1 )

⌉
,
⌈

2× ( H
n + 1 )

⌉]
and the

stride of [dW/(n + 1)e , dH/(n + 1)e] to enable pooling about 50% over-
lapping regions. Then, a regional feature set of feature map by scales is
obtained as follows:

F =
{
f sr | s ∈ {S1, S2, .., Sn

}
, r = {1, 2, . . . ,N} (1)

where f sr is the rth regional feature at scale s with a size of 1×1×D. There are
n scales in total and N the total number of regions in scale s. Once a regional
feature set of image was obtained, we can embed the feature set to obtain a
compact global descriptor: 1× 1×D as follows:

G =
∑
s

f sr (2)
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Attention Mechanism

The attention mechanism was initially applied to enhance NLP translation
accuracy. It locates crucial words in the input text that need attention. It has
also gained popularity in computer vision tasks (Li et al. 2020). Inspired by
these efforts, we incorporate the attention unit to better generalize the fea-
tures extracted from the spatial-pyramid network. The main reason is the
fact that not all the extracted features may describe regions of interest equ-
ally. For example, some regional features of an artefact image may describe
the background or other objects, negatively impacting retrieval performance
when aggregated into a global descriptor. In this case, the attention unit helps
the system earning benefits by assigning appropriate weights to these regional
features according to their contributions. Specifically, the attention leverages
a 1×1×D convolutional layer on the regional features to obtain their atten-
tion scores. The attention score ak of the kth regional feature f kr is computed
by the two operations as following:

ak =
exp(ek)∑
j exp(ej)

, ek = qT ∗ f kr (3)

where q denotes the D-dimensional vector of parameters and ∗ denotes the
inner product operation. The sigmoid function is applied to scale the cor-
responding regional feature for computing the attention score. The global
descriptor G∗ can be expressed as G′ =

∑
k akf

k
r . The global descriptor is

generated by the weight sum of the aggregated features. However, applying
the fixed weights for sum-aggregation may be ineffective due to the influence
of image variation (Li et al. 2020). Instead, we look for an adaptive weigh-
ting scheme that enables the model to produce more reasonable scores for
the feature aggregation by incorporating a content prior from the content of
an image. To end this, we utilize the two-level attention. The first level atten-
tion generates the aggregated feature G′ using the same scheme in (3) with a
D-dimensional vector q′ as input. The second level attention then computes
a D-dimensional vector q′′ by using a linear transformation as following:

q′′ = tanh
(
W.G′ + b

)
(4)

where W and b are a transformation matrix and a bias vector respectively.
The feature vector G′′ generated by q′′ will be the final aggregation results.
The vector q′ is randomly initialized in the first attention block; while the new
vector q′′ incorporates a content prior from the global image descriptor G′.
By optimizing the training process, the model can adaptively learn the weights
and form a global descriptor depending on the context of image.

Online Triplet Mining

The network model is trained using triplet labels, a special case of pairwise
labels, during the training process. These labels consist of three images: (1)
an anchor image, xa, (2) a positive image, xp, that has the same label as xa

and (3) a negative image, xn, that has a different label from xa. These images
are grouped together to form the triple input {xa, xp, xn} for training the
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Figure 3: Online triplet mining and triplet loss training.

network. The network is trained using a triplet loss function, which ensures
that the anchor image is closer to the positive image and farther from the
negative image at the same time. Given a triplet input {xa, xp, xn} , the loss
is calculated as following:

L
(
xa,xp,xn

)
= max

{
0, d

(
xa,xp

)
− d

(
xa,xn

)
+ m

)
(5)

where d is a distance metric and m is a margin that controls how far apart
the positive and negative example should be. The objective of minimizing the
loss function is to enhance discriminative descriptors. However, generating
triplets from all the training dataset is very challenging. To end this, we effe-
ctively mine the triplets in online manner (Wang et al. 2017). As depicted in
Figure 3, a training batch consists of a set of images with a fixed size of batch.
The triplet inputs fed into the network are generated by using every image in
the batch and then get the global descriptors. Afterwards, the network para-
meters are optimized using gradient descent. As the limited pages, we refer
readers to (Wang et al. 2017) for more information on online triplet mining
and triplet loss training.

EXPERIMENTS

Experimental Setting

We use a pre-trained ResNet50 architecture as a base CNN. The last convo-
lutional layer is cropped and we add the pyramid attention aggregation for
fine tuning. To evaluate the proposed approach, we use the following state-
of-the-art aggregation methods: NetVLAD (Arandjelovic et al. 2016), SPoC
(Jégou et al. 2011), R-MAC (Gordo et al. 2016) and GeM (Radenović et al.
2018) as the baselines. For all these methods, we apply marginm = 0.3 with
a batch size of 256 samples. We also use Adam (β1 = 0.9, β2 = 0.999)
with a learning rate of 0.0005 for all the datasets. Furthermore, our proposed
method employs four different scales of spatial grids (1×1, 2×2, 3×3 and
4×4) in the pyramid pooling block to encode an image into regional features,
resulting in a total of 30 regional features. For the R-MAC descriptor, we use
three different scales of rigid grids (1×2, 2×3, 3×4), which divide the image
into around 20 regions. For the GeM descriptors, a power value of 3 is used
as recommended in (Radenović et al. 2018) for general purposes. To ensure a
fair competition, the input image size is fixed to be 224×224 pixels and 512
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Figure 4: Losses for fine-tuning for all the methods.

dimensions of descriptor are used for all the methods. Figure 4 illustates the
validation losses for all the methods on the dataset. As shown in this figure,
these methods gradually decrease with similar trends.

Evaluation Metrics

For the evaluation of the dataset, the goal is to retrieve images that are as
similar as possible to the query image and to retain as many similar images
as possible. To achieve this, two evaluation metrics are used in this study:
recall R@10 and mean average precision (mAP). The recall R@10 measures
the percentage of correctly retrieved query images among the top 10 candi-
date images. The mean average precision (mAP) is calculated by finding the
average precision (AP) for each query image and then taking the mean of
these values.

Results

The experimental results are shown in Table 2. As can be seen from Table 2,
the retrieval effect of the five models on the image dataset is relatively good.
The lowest average retrieval accuracy mAP is 67.6% of sPoC and the high-
est is 77.9% of our proposed network (PAN). Therefore, it can be seen from
the comparative experimental results that in the image retrieval experiment
of the image dataset. The method PAN proposed in this paper highlights the
features of similar images between the same class of artefact images through
the attention mechanism and the retrieval effect is optimal with the average
retrieval accuracy of 77.9% and a recall rate of 81.8%. The mAP of the
other two mainstream methods NetVLAD and GeM descriptors are 71.6%
and 69.2, respectively, which is lower than the retrieval accuracy of the pro-
posed model. We also compare our proposed model with R-MAC taking the
maximum value for each divided region of input map. By comparing the test
results, we find that PAN is still more accurate than R-MAC for the data-
set, with +6.42% of the average retrieval accuracy and +4.87% of the recall
rate. The interpretation is that the attention enhances the local CNN fea-
tures whose regions of interest are described. Meanwhile it suppresses the
confusing regional features captured by pyramid pooling.
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Table 2. Retrieval accuracy of different methods on the
image dataset.

Model mAP R@10 (%)

NetVLAD 71.6 73.6
SPoC 67.6 70.1
R-MAC 73.2 78.0
GeM (power p = 3) 69.2 73.0
PAN 77.9 81.8

Table 3. Ablation experiment accuracy.

Model R@1 (%) R@5 (%) R@10 (%)

PAN + No attention 47.2 67.4 72.6
PAN + Single attention 57.2 74.1 77.7
PAN +Two-level attention 59.4 77.9 81.8

To assess the impact on the accuracy of the network model, an atten-
tion mechanism ablation experiment was conducted. The results of this
experiment are displayed in Table 3.

As shown in Table 3, the accuracy of the model without any attention
mechanism (PAN + no attention) is between 47.2% and 72.6%, while the
accuracy of the model using standard attention (PAN + single attention) is
between 57.2% and 77.7%. This demonstrates that the attention mechanism
has improved the retrieval accuracy of the feature pyramid network. Additi-
onally, the retrieval accuracy of the model that uses the two-level attention
mechanism (PAN+ two-level attention) is higher than that of single attention
one. These results indicate that incorporating the two-level attention mech-
anism proposed in this paper effectively enhances the image descriptor for
searching visual artefacts.

Fig. 5 shows the top 7 most similar ranking results for 5 artifact images.
The validation set query images are displayed in the left column, while the
closest training set neighbours are to the right. If the neighbour is the same
class as the query (same type, material, culture, and period), it’s enclosed in
a green box; otherwise, it’s in a red box. In Figure 5, most of the retrieved
images closely match the query images. For instance, the query image in row
A that contains a Ban-Chaing culture (pre-historical) pottery jar results in
all the retrieved images similar jars with the same characteristics. Row C
exhibits a woven silk fabric from the Rattanakosin period (19th-21st century
AD) in the query image, and mostly similar images in the results. However,
there may be some false matches, such as in Row D, where the query image
features a specific culture’s ancient tobacco pipe, but the retrieved results
display visually similar pipes from other cultures (red box).

CONCLUSION

In this paper, we propose a novel CNN-based approach for retrieval in cul-
ture heritage objects. In our approach, a new CNN architecture, named
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Figure 5: Retrieval results of top 7 culture heritage objects.

feature pyramid network, is well-designed to learn image features and effecti-
vely generate a compact visual descriptor by incorporating spatial pyramid
pooling and attention mechanism. In order to capture discriminative descri-
ptor, we train the network model with online triplet mining and triplet loss
training. Experiment results demonstrated that the network model outper-
forms other CNN-based feature aggregation methods for image retrieval on
standard measures.
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