
Human Interaction and Emerging Technologies (IHIET 2023), Vol. 70, 2023, 99–107

https://doi.org/10.54941/ahfe1002934

Efficient Inductive Logic Programming
Based on Predictive A*-Like Algorithm
Moeko Okawara1, Junji Fukuhara1, Munehiro Takimoto1,
Tsutomu Kumazawa2, and Yasushi Kambayashi3

1Tokyo University of Science, Noda, Chiba 2780022, Japan
2Software Research Associates, Inc., Japan
3Nippon Institute of Technology, Japan

ABSTRACT

Recently, research scientists have developed various machine learning techniques. In
particular, deep learning contributes to creating structured data such as tables from
unstructured data, i.e., images and sounds. On the other hand, most of the machine’s
decisions and actions are hard to be explained or verified. As another perfectly explai-
nable approach, Inductive Logic Programming (ILP) has been used in data mining.
ILP is useful to extract relevant relations from structured data. ILP inductively infers a
hypothesis as a result of learning from given examples and background knowledge. In
the inference process, ILP explores hypothesis candidates while calculating a cover set
that is a set of examples deduced from each candidate. This process costs a lot. We pro-
pose a new search algorithm of the hypothesis through efficiently computing the cover
set on a relational database management system (RDBMS). Some modern RDBMSs
process SQL with multi-worker or GPU in parallel. Our ILP efficiently calculates the
cover set through transforming each deduction into SQL on such an RDBMS. However,
the overhead for launching SQL processing is very expensive and often decreases effe-
ctiveness of the parallel execution. We extend a hypothesis search algorithm A*-like
of Progol, which is one of ILP systems, to refine several hypothesis candidates with
high evaluation scores simultaneously. We implemented our extension in Progol and
evaluated it in practical experiments. Our results show that our method remarkably
improves the performance of ILP systems.

Keywords: Inductive logic programming, Cover set, SQL

INTRODUCTION

Various machine learning (ML) techniques have been developed widely over
the last decade. In particular, deep learning (DL) contributes to ML for cre-
ating a lot of structured data such as tables from unstructured data, i.e.,
images and sounds. The results have led to much success in engineering,
but most of their decisions and actions are hard to be explained or verified.
On the other hand, Inductive Logic Programming (ILP) (Martínez-Angeles et
al., 2014) i.e., a perfectly explainable ML approach, has been used in data
mining. ILP, which is based on first-order predicate logic, is one of the sym-
bolic approaches that is useful to deal with structured data and the relations
between them. In a practical sense, we can add the results generated by ILP

© 2023. Published by AHFE Open Access. All rights reserved. 99

https://doi.org/10.54941/ahfe1002934

100 Okawara et al.

into given background knowledge and make the knowledge database rich.
Thus, ILP becomes more important for data mining than before, and we
can extract meaningful relations between the structured data. However, con-
trary to DL, it is not easy for ILP to perform a learning process efficiently,
because we cannot make ILP processes uniformly executable in parallel on
GPUs. This learning process is an inductive prediction process that uses posi-
tive and negative examples as training samples. In the process, ILP explores
hypothesis candidates while calculating a cover set. A cover set is a set of
examples deduced from each candidate. Notice that from the finally obtai-
ned hypothesis, the positive examples should be deduced, and the negative
ones should not be deduced with the background knowledge. The cover set
is known to be uniformly calculated in the relational operations on a rela-
tional database management system (RDBMS) such as SQL. Since modern
RDBMSs can not only manage memory operations safely but also execute
SQL in parallel utilizing parallel workers or GPUs. Thus, we can execute ILP
in partially parallel. However, we cannot ignore the significant performance
overhead of launching the procedure for each cover set calculation. In order
to mitigate this problem, we propose an extension of an A*-like algorithm
(Muggleton, 1996), which is the algorithm for searching for a hypothesis
adopted by in Progol (Muggleton, 1991). Progol is one of the most popular
ILP systems. The algorithm incrementally refines each hypothesis candidate
through adding a literal to it, and calculating its cover set to check whether it
satisfies the condition as a hypothesis. Our algorithm, called Predictive A*-
like algorithm, simultaneously performs several refinements with high possi-
bility as a hypothesis. Even though the refinements may include redundant
hypotheses due to multiple-time-findings of the same hypothesis, the predi-
ctive refinement reduces a lot of overhead cost for launching the procedure
of cover set calculation. Thus, our algorithm can generate a hypothesis more
efficiently than the traditional search algorithm. We have extended Progol to
implement Predictive A*-like algorithm on PostgreSQL.We demonstrate that
our extended Progol works significantly well to obtain practical experimental
results.

The rest of this paper is organized as follows. Section 2 gives the preli-
minary of ILP. Section 3 describes the manner of our translation of logical
programs to SQL for calculating cover sets on an RDBMS. Section 4 describes
our proposed extension of A*-like algorithm. Section 5 presents experimen-
tal evaluations of our system. Section 6 discusses related work. Finally, we
conclude our discussion in section 7.

PRELIMINARY

Knowledge Representation

ILP is a kind of symbolic artificial intelligences and based on logic program-
ming. In particular, Progol is based on first-order logic and uses the logic
programming language Prolog for its uniform representation. The know-
ledge in Prolog is represented as a set of Horn clauses. For example, Noby’s
family relationship of Doraemon, which is a Japanese cartoon, is presented

Efficient Inductive Logic Programming Based on Predictive A*-Like Algorithm 101

as follows:

father(nobiru, nobisuke).father(nobisuke, noby).mother(tamako, noby).

(1)

grandfather(X,Z) : −father(X,Y), father(Y,Z). (2)

grandfather(X,Z) : −father(X,Y),mother(Y,Z). (3)

The tuples with predicates father, mother and grandfather respectively
represent relationships father-child, mother-child and grandfather-grandchild
between their elements, called a literal. The literals compose a clause, which
has a period at the end of it. The clause with ‘:-’ is called a rule, where the
left hand side of it is called a head and the right hand side is called a body.
The sequence of literals in the body means logical-and of them, and the rule
means that the body implies the head under corresponding variablesX,Y and
Z. Rules father and mother with no body, which are called facts, mean facts
between persons nobiru, nobisuke, tamako and noby. These clauses mean
logical-or of them; hence, they represent that X is a grandfather of Z, if Y is
a father of Z and X is a father of Y or Y is a mother of Z and X is a father
of Y, respectively.

Inductive Logic Programming

The outline of the algorithm of Progol (Muggleton, 1996) is as follows:

(1) if E = ∅, return H
(2) Generate MSH from the first example e of E
(3) Search for the hypothesis space to gain the optimal hypothesis
(4) B:=B∪H’, H:=H∪H’
(5) E’:= {e’ | e’ ∈ E and B |= e’}
(6) E:= E \ E’
(7) go back to 1

First, given positive examples E and background knowledge B, Progol
picks up an example e from E (step 2) and generalizes it to a rule H’ (step 3)
one by one. Second, onceH’ is generated, it is added into B (step 4), of which
the cover set is subtracted from E (steps 5 and 6). Finally, when E becomes an
empty set, a set of all the generatedH’ is the hypothesisH (step 1). Notice that
since H’ is also represented as a fact or rule, it can be added into the current
background knowledge to extend it. Moreover, Progol requires mode decla-
rations. They correspond to a specification of generated rules as a hypothesis,
consisting of ones for heads and bodies of the rules. The declarations are used
to derive the most specific hypothesis (MSH) through entailing each example.
SinceMSH is the most complex hypothesis, it not only gives the lower limit to
the hypothesis search, but also enables generating more specific hypothesis
candidates through adding literals included in MSH to the current candi-
dates. The process that makes hypothesis candidates more specific is called
refinement, and corresponds to searching process of H’ (step 3).

In the step 3, Progol searches for a hypothesis while refining a hypothesis
candidate with a higher score of the predefined the evaluation function f. The

102 Okawara et al.

function f returns the higher score when a hypothesis candidate has the large
cover set of positive examples, the small cover set of negative examples, and
the short clause. This searching manner is called an A*-like algorithm. It is
conducted as follows:

(1) Open := { [] }, Closed := ∅
(2) s := best(Open),Open := Open - {s}, Closed := Closed ∪{s}
(3) Open := (Open ∪ refinements(s)) \ Closed
(4) if terminated(Closed,Open) return best(Closed)
(5) else if Open = ∅ return e
(6) else goto 2

Hypothesis candidates are generated through refinements starting with a
clause that has no literal. Once the hypothesis candidates are generated, they
are added to the work-list Open (step 3). The next hypothesis candidate s
to refine is selected from Open based on the function best (step 2), to give a
hypothesis candidate with the highest score given by of f. Once s is refined, s
is added to another work-list Closed and then removed from Open (step 2).

The process is repeated until the predefined terminate condition terminated
is satisfied orOpen becomes empty. The terminate condition gives true when
neither the remaining candidates nor any of their refinements have higher
scores of f than the current one, resulting in the current candidate as a clause
in the final hypothesis (step 4). IfOpen becomes empty, e itself is regarded as
a hypothesis clause (step 5).

TRANSLATION INTO SQL

Our ILP system instructs an RDBMS to calculate a cover set of examples
in SQL. Modern RDBMSs can not only manage memory operations but
also process SQL in parallel utilizing parallel workers or GPUs. Our system,
taking the advantages of an RDBMS, calculates the cover set safely and effi-
ciently. In general, deductions required by calculation of the cover set can
be executed as the relational operations, which are described in SQL que-
ries. Notice that it is difficult for SQL to represent functions used in Prolog;
hence, descriptions in our ILP are similar to Datalog (cBioPortal docs, n.a.),
and has no function. Our system performs the deductions on an RDBMS
in two steps i.e., a translation step and an execution step. The translation
step translates hypothesis candidates and background knowledge into SQL.
First, we collect the information of elements with the same variable from each
literal in the clause of a hypothesis candidate. Second, we generate SQL com-
mand inner-joins of a table corresponding to each literal as join operations.
At this time, based on collected variable information, we add the condition
of the join, where columns corresponding to the same variable are specified
as equal columns, as an on-clause. Finally, we generate a SQL select-clause
as projection operations to leave the required columns from the joined table.
Fig. 1 shows that the join and projection of tables. The query corresponding
to the operations in Fig. 1 is represented in SQL as follows:

select rule0.c0, rule1.c1 from rule0 inner join rule1 on rule0.c1 = rule.c1

Efficient Inductive Logic Programming Based on Predictive A*-Like Algorithm 103

Figure 1: Join and projection of tables.

In our covering process, positive and negative examples have special colu-
mns, kind, id and weight as case sets in addition to ones corresponding to
elements of literals. The column kind, which shows distinction of a positive
or negative example for each row, is set to one for the positive one and zero
for the negative one. The distinction enables an RDBMS to handle both of
positive and negative examples as a single table. The column id, which repre-
sents the correspondence to the original clause, is set to a unique number that
is the same as a label attached to the original clause.

The id number enables an RDBMS to send the cover set table as a sequence
of numbers without sending the table itself, contributing to suppressing com-
munication cost between the ILP system and an RDBMS. The column weight
is used to compute the size of a cover set; hence, it is typically set to one, but if
the cover set includes redundant examples, it is set to the number of the same
examples, to suppress redundant computation. Once the hypothesis satisf-
ying the terminate condition is found, we remove the positive cover set of it
is from E. For example, the removal of k-th positive example is represented
by the following SQL query:

delete from positive-examples where id = k.

PREDICTIVE A*-LIKE ALGORITHM FOR SQL DEDUCTION

The cover set computation occurs, each time a new hypothesis candidate
is generated through refinement. The refinement process generates more
specific hypothesis candidates through adding a new literal to the current
candidate from the MSH body. For example, given the k-th literal of the
MSH body, a new hypothesis is generated as follows:

1. If the k-th literal of the MSH body is possible, it will be added to the
body of the current hypothesis candidate.

2. The current position k of the original candidate and the newly generated
candidate is replaced with k + 1.

In this refinement, a new literal is added to the current candidate from the
MSH body one by one. This refinement manner requests an RDBMS to com-
pute the cover set per generation of a hypothesis candidate. However, this
request costs a lot because its overhead in occurs frequently. The overhead

104 Okawara et al.

Figure 2: Conventional Method for Refining a Hypothesis.

Figure 3: Proposal Method for Refining a Hypothesis.

includes connecting costs between the system and an RDBMS, and prepara-
tion costs for processing queries on a machine with the RDBMS. We extend
the refinement to a multiple refinement that simultaneously generates several
hypothesis candidates through adding a literal to each position in {k’ | k ≤ k’
the number of literals of MSH}. Consider MSH in the following:

rule(A, B) : -t0(A, D), t1(B, E), t2(D, C), t3(C, B).
(2) In addition, consider the current hypothesis candidate in the following:
rule(A, B) : -t0(A, D).
(3) Traditional Progol generates a new hypothesis candidate as shown in

Fig. 2, while our system generates the candidates as shown in Fig. 3. Fur-
thermore, our system applies the multiple refinements to several candidates.
For example, assume that we specify “:- set(refine, n)?” on our ILP system.
Multiple refinementsmultiple-refinement is repeatedly applied to several can-
didates until the number of generated new candidates exceeds the value of the
user defined threshold n as follows:

(1) Open := { [] }, Closed := ∅
(2) S := ∅
(3) repeat
(4) s := best (Open),Open := Open - {s}, Closed := Closed ∪{ s }
(5) S := S ∪multiple-refinment (s)
(6) until |S| >n
(7) Open := Open ∪ sendToRDBMS(trans(S))
(8) if terminated (Closed,Open) return best (Closed)
(9) else if Open = ∅ return e

(10) else goto 2

We call the above extension of A*-like algorithm Predictive A*-like algori-
thm, which predictively refines several hypothesis candidates based on their
evaluation scores. In the algorithm, trans translates a sequence of clauses
in S into SQL queries. First, it translates each clause into a joined table as
mentioned in Section 3. Second, it combines them with SQL union-all com-
mands. Besides, as shown in Section 3, it generates an SQL select-clause to
leave required columns. Once SQL queries are generated, it is sent to an
RDBMS by sendToRDBMS, which performs the execution step. Finally, after
an RDBMS returns id and kind of cover sets, sendToRDBMS calculates the
evaluation score from the number of each kind based on f, sets the result to
corresponding a new candidate, and returns S.

Efficient Inductive Logic Programming Based on Predictive A*-Like Algorithm 105

Thus, Predictive A*-like algorithm suppresses frequency of calling send-
ToRDBMS, so that it contributes to suppressing overhead and making
hypothesis search efficient.

EVALUATION

We conducted numerical experiments to evaluate how effective our proposed
method is compared with the traditional execution.

Environment and Settings

To show the effectiveness of our method, we implemented our proposed
Progol based on SQL, called SProgol in OCaml. We adopted PostgreSQL
as a RDBMS, and evaluated conducted some experiments on them. In the
experiments of SProgol, we evaluated the following issues.

1. The effectiveness of using PG-Strom. PG-Strom is an extension module
for using GPU on PostgreSQL.

2. The effectiveness of multiple refinements as compared to the original refi-
nement. The predefined degree n of the multiple refinements is specified
by description “:-set(refine, n)?”.

The former aims to whether computing cover sets on GPU or not. Our
experimental environment is presented as follows:

– OS: CentOS Linux release 7.9.2009 (Core)
– CPU: AMD EPYC 7232P 8-Core Processor
– GPU: NVIDIA A100-PCIE-40GB
– CUDA Toolkit: 11.4
– PostgreSQL: 13.4
– OCaml: 4.14.0
– PG-Strom 3.0
In each experiment, the negative examples were automatically generated

four times as many as the positive examples, based on stochastic logic pro-
grams (Muggleton, 1995), which became active by setting “:-set(posonly)?”.

Experimental Results

Fig. 4 shows the results of the experiments for breath cancer datasets
(cBioPortal docs, n.a.), sample and patient which has 1124 positive examples
respectively. The patient dataset has much more properties than the sample
one; hence we extracted two datasets with dozen properties from the first
ones in the patient dataset, making them patient1 and patient2. For the all of
three datasets, we assume the hypothesis with two arguments in the head.We
show the results of CPU and GPU as ratio of ones for multiple refinements
with each degree to ones with the original refinement. The result of SProgol
with multiple refinement shows 5.47x speedup on CPU and, 4.06x speedup
on GPU for the sample dataset, 5.45x speedup on CPU and, 4.32x speedup
on GPU for the patient1 dataset, and 6.82x speedup on CPU and, 6.83x spe-
edup on GPU on patient2 dataset at the best for each. Notice that the result
on GPU was evaluated for degree 5 to 20 degree of the multiple refinements
because generated tables could not be allocated in the memory on GPU. As

106 Okawara et al.

Figure 4: Execution time for breath cancer programs.

shown in the results, the multiple refinements through around 100 degrees
contribute to the speedup of calculating cover sets on RDBMS.

RELATED WORKS

Eyad Algahtani and Dimitar Kazakov propose computation of the cover
set for a hypothesis on GPUs based on propositional logic (Algahtani
et al., 2018). Martínez-Angeles et al. propose the bottom-up evaluation of
Datalog programs on GPU (HeteroDB, 2021). They are implemented for spe-
cific architectures, hence, once the specifications of each GPU are changed,
they must to reimplemented. Actually, GPUs are rapidly progressing and their
execution environments are sensitive to the architectures. Our ILP uses SQL
as a kind of intermediate representations. The characteristic enables us to take
advantage of the latest functionalities of GPUs through RDBMS supporting
them. Predictive A*-like algorithm contributes to exploiting the potential of
the SQL based ILP.

CONCLUSION AND FUTURE WORKS

We have demonstrated how a modern RDBMS accelerates the computation
of the cover sets of hypothesis candidates in ILP parallel workers or a GPU,
and have proposed Predictive A*-like algorithm as an extension of the hypo-
thesis search algorithm. The experimental results show that Predictive A*-like
algorithm makes the SQL based ILP system significant speedup. However,
our current ILP system has not addressed the curse of dimensionality, which
occurs in problems requiring a huge amount of clauses, yet, as well as other
machine learning systems. In the future work, we are planning to improve our
current implementation using meta-heuristics for giving the final hypothesis
regardless of the dimensionality.

ACKNOWLEDGMENT

This work is partially supported by Japan Society for Promotion of Sci-
ence (JSPS), with the basic research programs (C) (No.19K119090 and

Efficient Inductive Logic Programming Based on Predictive A*-Like Algorithm 107

22K11988), Grant-in-Aid for Scientific Research (KAKENHI), and JST
SPRING, (No.JPMJSP2151), and receives the provision of evaluation envi-
ronments from HIGHRESO Co., Ltd.

REFERENCES
Algahtani, E., Kazakov, D.: GPU-accelerated hypothesis cover set testing for learning

in logic. In CEUR Proceedings of the 28th International Conference on Inductive
Logic Programming CEUR Workshop Proceedings (01 2018).

Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer Pub-
lishing Company, Incorporated, 1st edn. (2012).

HeteroDB: PG-Strom manual (2021), http://heterodb.github.io/pg-strom/.
Martínez-Angeles, C.A., Dutra, I., Costa, V.S., Buenabad-Chávez, J.: A Datalog

Engine for GPUs. In: Hanus, M., Rocha, R. (eds.) Declarative Programming and
Knowledge Management. pp. 152–168. Springer International Publishing, Cham
(2014).

Memorial Sloan Kettering Cancer Center: cBioPortal docs:
https://www.cbioportal.org/.

Muggleton, S.: Inductive logic programming. NGCO 8, 295–318 (1991).
https://doi.org/10.1007/BF03037089

Muggleton, S.: Inverse entailment and progol.NewGen. Comput. 13(3–4), 245–286
(dec 1995). https://doi.org/10.1007/BF03037227

Muggleton, S.: Stochastic logic programs. Advances in inductive logic programming,
32,254–264(1996).

Muggleton, S: Progol (2001) https://www.doc.ic.ac.uk/∼shm/Software/progol4.4/

http://heterodb.github.io/pg-strom/

	Efficient Inductive Logic Programming Based on Predictive A*-Like Algorithm
	INTRODUCTION
	PRELIMINARY
	Knowledge Representation
	Inductive Logic Programming

	TRANSLATION INTO SQL
	PREDICTIVE A*-LIKE ALGORITHM FOR SQL DEDUCTION
	 EVALUATION
	 Environment and Settings
	Experimental Results

	RELATED WORKS
	CONCLUSION AND FUTURE WORKS
	ACKNOWLEDGMENT

