
Human Interaction and Emerging Technologies (IHIET 2023), Vol. 70, 2023, 149–162

https://doi.org/10.54941/ahfe1002939

Human Like Programming Using SPADE
BDI Agents and the GPT-3-Based
Transformer
Ratovondrahona Alain Josué, Rakotozanany Hanitriniaina Marielle,
Mahatody Thomas, and Manantsoa Victor

Doctoral School Modeling-Computer Science, University of Fianarantsoa, Madagascar

ABSTRACT

Programming an application requires multiple people with skills and experience in that
field. It will also take a lot of time with multiple steps before achieving the final result
of an application. Today, developers are assisted by various tools, software, or appli-
cations based on Artificial Intelligence (AI) such as OpenAI’s ChatGPT. These AI that
automatically generates source code helps developers to develop applications much
faster. However, although code generators are numerous and very helpful, we are not
yet at the stage where we can generate a fully functional application, but just generate
pieces of source code. And we don’t know yet how to understand textual descriptions
of Software Requirements to generate an application directly. Or where to find data
to train an AI capable of generating a functional application from textual descriptions.
Therefore, we created a new architecture composed of virtual intelligent agents called
SPADE BDI to create virtual developers. The virtual intelligent agents were responsi-
ble for keyword extraction, Software Requirements synthesis, and source file creation.
Then we used a transformer based on pre-trained GPT-3 for source code generation.
This transformer is orchestrated by a virtual intelligent agent. To solve the problem
of training data, we collected and created a new dataset called WSBL. The data came
from several projects developed with the Laravel Framework over 4 years. The result
allowed us to have a functional application directly from a textual description. Each
intelligent virtual agent played a role like a developer by analyzing textual of Software
Requirements and then generating source code. With a 15% reduction in time to deve-
lop an application compared to brute development. Our new architecture allows for
processing textual descriptions (Software Requirements) step by step using intelligent
virtual agents named SPADE BDI and source code generation is done by a transformer
based on pre-trained GPT-3 to have a directly functional application.

Keywords: Software requirements, Source code generation, SPADE BDI, Transformer, WSBL

INTRODUCTION

The software industry is constantly evolving, and the demand for efficient
and fast solutions is on the rise. The generation of source code from textual
descriptions is a promising approach to meet these needs, allowing for the
automated generation of code from specifications described in a clear and
concise manner.

© 2023. Published by AHFE Open Access. All rights reserved. 149

https://doi.org/10.54941/ahfe1002939


150 Josué et al.

Specifically, our laboratory and research team GLORE focuses its efforts
on helping developers in their tasks. For example, the work of (Dimbisoa,
2020) generates graphical interfaces using the MDA approach. The research
of (Andrianjaka et al., 2019) and (Razafindramintsa et al., 2016)focused on
generating code from UoD or Universes of Discourse using the Elaborate
Lexicon Extended Language or ELEL and REstructuring Lexicon Exten-
ded Language or RELEL to extract useful keywords for code and database
generation. For (Razafimahatratra et al., 2017), UML is used for emergent
design to ensure application maintenance and quality. Finally, the work of
(Tarehy et al., 2017) allows for the reuse of software components to optimize
development time. All of this is done in order to meet the increasingly deman-
ding requirements of software development, which includes saving time and
delivering quality products.

However, there are also AI-based approaches proposed for code genera-
tion. With the advancement of deep learning, the problem of code generation
can be treated as a textual translation problem. Source codes or program-
ming languages are considered as a natural language that can be translated.
Therefore, models that have been successful in textual translation, such as
Seq2Seq (Weiss et al., 2017), have also been successful in code generation.
And code generation from text is also the reverse of generating comments
from code. Therefore, models (Hu et al., 2018b, 2018a; Kuang et al., 2022)
have also been applicable to source code generation. With deep learning-
based models, inputs are not just text but can also be in the form of images
(Beltramelli, 2018) such as mockups. This shows the interest in works on code
generation.

Despite the interests and results of research already conducted, AI is
not always capable of directly generating an application (Le et al., 2020).
The problem comes from the fact that it is first necessary to under-
stand the software requirements in textual description form. Then, a lot
of datasets are required for training (Yang et al., 2021). Finally, it is
also necessary to consider the state of the art in source code generation
(Le et al., 2020).

In this work, we collected data that we evaluated with existing deep lear-
ning approach. Compared to existing datasets, our particularity was on the
form of software requirements that are the demands or needs of the non-
developer but a real description by an end-user. And we also developed a
new architecture to directly generate an application from user requirements
or textual descriptions. We used intelligent virtual agents. The advantage of
our work is that we do not simply rely on deep learning to generate code, but
we also used a number of technologies to address the issues. We used SPADE
BDI (Rafalimanana et al., 2018), which is interoperable with our source code
generator.

We will detail this work with the following plan. The next section intro-
duces Related Work. Then a section to explain the Methodology. Follo-
wed by Experiments conducted to confirm the hypotheses. Then, we will
have a section for the Discussion of the results. Finally, the Conclusion
section.



Human Like Programming Using SPADE BDI Agents and the GPT-3-Based Transformer 151

RELATED WORK

To develop or generate an application or source code, we have several existing
methods that continue to be improved. Programming languages, DSL, MDA
coupled with UML, n-gram models, probabilistic grammars, and solutions
proposed by artificial intelligence, especially with deep learning.

Developers are much more comfortable with programming languages.
They can read or modify the source codes they have written. And we can
develop any software in various domains with a programming language of
any level of complexity (Liu et al., 2020). However, programming languages
are limited to the use of developers. The volume of work and comple-
xity compared to the projects to be developed can be significant in terms
of time.

And work on code generation for versatile programming languages has
emerged. First, there is LPN or Latent Predictor Network, which can gene-
rate Python or Java code (Ling et al., 2016). Then, the SNM or Syntactic
Neural Model (Yin and Neubig, 2018), which is generalized by the TRANX
approach (Yin and Neubig, 2018) for various target programming languages,
the latter using multiple deep learning decoders.

The DSL (Liang et al., 2013) is another approach for source code genera-
tion. It is useful for describing the results of generated source code. To reduce
the complexity of code generation, researchers try to limit the complexity of
the programming language. Hence, the interest in using a DSL. And some-
times the results are very accurate. Unfortunately, the DSL is specific to a
given domain, and it is really difficult to apply it to other domains (Liu et al.,
2020).

The MDA approach also promises good results for code generation. The
works of (Andrianjaka et al., 2019) and (Razafindramintsa et al., 2016) pro-
vide transformation rules to convert requirements into source code. They
used ReLEL to instantiate and capture the conceptual aspects of future sof-
tware, and they used ATL to implement the MTM transformation phase and
Acceleo for the M2T phase. The problem with this work is that the rules must
be manually modified when the conditions have changed, or the constraints
are no longer valid.

The n-gram model (Yang et al., 2022) and probabilistic grammars (Yang
et al., 2022) are also exploitable approaches. However, they are ancestors
to deep learning-based models today. Code generation can be treated as
a translation problem or the inverse of comment generation from source
code. Recent models that have evolved and contributed to this field include
Seq2seq, Deepcoder, and the transformer models such as GPT-3.

The Seq2seq (Weiss et al., 2017) architecture is a deep recurrent neural
network encoder-decoder that translates speech from one language into text
in another. This solution has been adapted to generate code from text. Text
and code are aligned to capture the correspondence and enable subsequ-
ent generation. The Seq2seq model also introduces the attention mechanism
(Vaswani et al., 2017), which is used by transformers.

The Deepcoder (Balog et al., 2016) model proposed an encoder that ensu-
res the comparison of an input-output example from a set M to a real latent



152 Josué et al.

Figure 1: Creating the dataset.

vector. Its decoder also compares the predicted input-output of a set M to the
real value. The attention mechanism is also used in this model.

Looking at the Seq2seq and Deepcoder models, transformers play a signi-
ficant role in code generation. The transformer model avoids the recurrence
that slows down processing and can directly encode a large sequence but not
by character. Currently, the research conducted by OpenAI with the GPT-3
model (Brown et al., 2020), which is one of the transformer variants at the
forefront of the state of the art in text and code generation, has exploded. The
peculiarity of GPT-3 is that it has been trained with 175 billion parameters
and it is an autoregressive language model.

The models described in this section are promising approaches for genera-
ting code. However, we have not yet had a model that will directly generate
a functional application. Only raw development through a programming
language can lead to an application. Deep learning models are effective in
generating code snippets from keyword-driven queries by a developer. So in
order to achieve our goal, in the next section we will detail our approach to
directly generate an application.

METHODOLOGY

In this section, we will discuss data collection, data processing, applying
state-of-the-art text-to-code generation techniques to our dataset, and the
architecture of our model for automatic application generation.

Data Collecting and Processing

Figure 1 shows the process for developing the new dataset. First, we collect
source code from the GitLab repository. Second, we remove duplicate data
and associate it with textual descriptions (software requirements) from JIRA
in CSV format. Third, we conduct a manual review of the source code. Finally,
we apply cross-validation to exclude source code that contains bugs. The
details of the creation process are presented in the following section.

Data Collecting
The source code comes from a GitLab repository. This repository contains
projects from a company specialized in outsourcing IT development services.
The projects are varied but coded in the same PHP programming language
with Laravel 6 Framework and others that will not be treated but detailed



Human Like Programming Using SPADE BDI Agents and the GPT-3-Based Transformer 153

Table 1. Dataset’s developpers.

IT professions Numbers Average Years of Experience

Senior Developer 7 8 years
Junior Developer 13 2 years
Senior QA Tester 4 6 years

Figure 2: Sample of repository code.

in Table 2. To automate the pull request of source code from the GitLab
repository in Figure 2, we set up a simple Python program on a VPS server to
transfer the code automatically from the repository to our VPS server. Regar-
ding the projects and codes, we provide details on the teams that developed
the projects in Table 1. Project details are confidential, but information such
as the number of software requirements and the length’s code is detailed
in Table 2, which results directly from the dataset processing. The techno-
logies or languages are multiple, but we simply took the technologies with
more data.

The reasons for using this dataset are:

• The requirements are actual requests from end-user not a developper.
• The software requirements are user stories, not just feature statements.
• Most existing datasets are primarily focused on Python and Java.
• Developers have already introduced unit tests to avoid non-functioning

code and redundancies.

Data Processing
For the software requirements, we collected them from the backlogs in JIRA
in CSV format, and then processed them with a Python program to remove
unused columns during training. In Figure 3, we show an excerpt of the
data from the JIRA backlog. Thus, we translated the software requirements
into English using our method (Ratovondrahona et al., 2018) to facilitate
comparisons and usage with the models that we will discuss in the next
section.

We used the SimHash algorithm by (Manku et al., 2007) to compare
redundant software requirements. The algorithm transforms texts into a fixed
size hashed format. This method allows for the direct detection of redun-
dant texts. For example, “list of data” is repeated several times but differs



154 Josué et al.

Figure 3: Backlog of software requirements.

Table 2. The dataset.

Average size of functionalities The average length of software
Languages per file (tokens) requirements (tokens)

PHP 167/2038 Function/file 9.7
JavaScript 218/4894 Function/file 9.7
Python 54/1365 Function/file 9.7

for each implementation code. That’s why we did manual checks after dete-
cting redundancies to avoid deleting data intentionally. So, sr1 and sr2 will
be duplicated if implementation codes have different functionalities.

We used the edit distance algorithm (Levenshtein, 1966) to compare two
code fragments for the source code. If the distance is large, the code fragments
are not similar, and if not, they are redundant. However, we manually checked
the codes after automatic detection to avoid accidentally deleting data. Then,
we used canonical machine learning to ensure an equal distribution of source
code and software requirements (Krawczyk, 2016). We balanced our dataset
with a 1:1 ratio (software requirement: code). Afterward, we grouped the
codes that corresponded to a user story. Here, the ratio was 1:n (software
requirement: n*code).

Manual Review
After creating the pairs (software requirement: code) or (software require-
ment: n * code), we manually rechecked the correspondence between the
software requirement and the corresponding implementation codes. Then,
we also verified the implementation codes if they work as provided. The next
step shows how we automated the code testing.

Cross Validation by Software Testing
We used test cases, and the tests we formulated were done in two steps.
First, we set up a template to specify the input parameters (data types and
value ranges) and generate test cases automatically using fuzz testing. Finally,
we run the tests automatically. We followed the same process in the work
(Liu et al., 2020) using EvoSuite accompanied by a manually created template
to explain the specific inputs and automatically generate test cases based on
the template.



Human Like Programming Using SPADE BDI Agents and the GPT-3-Based Transformer 155

Dataset and Quality
To evaluate the quality of our dataset, we compared it with two datasets
that are among the state of the art: CoNala (Yin et al., 2018) and ReCa
(Liu et al., 2020). We observed that our software requirements are not only
feature statements but also include user stories. Additionally, the codes are
manually verified and validated to ensure functional codes. JavaScript and
Python codes are not used in the dataset for confidentiality reasons.

For the evaluations, we have established three metrics: The first metric is
the use of BLEU (Papineni et al., 2002). This metric was originally initiated
for textual translation. For code generation, BLEU scores are calculated by
comparing the generated code to a set of reference code. The score value
ranges between 0 and 1. It can be considered that for a generated code c, if
the similarity is high or identical compared to the reference codes, then the
quality of the generated code is good. Otherwise, if the similarity is low, the
quality is poor.

The second metric is the number of errors. Here, we did not include the
number of warnings in the code since our goal is for the program to function
properly.

The third metric is the percentage of test cases passed by the generated
program. We automatically generate a test case for each generated code.

Code Generation

In order to generate code from a software requirement, we need to make the
machine understand the request. We will detail this process in this section.

Understanding of Textual Description

When we want to generate code from text, the machine needs to understand
what is being asked of it. Therefore, the machine must understand the context
in the textual description and extract the essential words.

Word Embedding. We have already conducted previous work (Ratovon-
drahona et al., 2018) on context-based translation. Our objective was to
capture the meaning of the text, not just the syntactic aspect. Word embed-
ding works as follows. To capture the semantics between two words, we
calculate the similarity score or cosine similarity between −1 and 1, where
a higher score means more similarity and vice versa. Considering that the
words are mapped into a vector space where each word has its own vector
coordinate.

P(W0|Wi) =
e

(Vwi .VT
W0

)

∑v
j = 1 e

(Vwi .VT
Wj

)

Then, to each word w it is assigned a vector representation v, and the pro-
bability thatwo is in the context ofwi is defined as the softmax of their vector
product. In our project, we pre-trained directly with the word embedding of
OpenAI (Neelakantan et al., 2022) to group keywords around a software
requirement. For example, around the word ‘truck’ we have ‘parts’, ‘tires’,
‘other items’, and ‘supply’. This will allow our architecture later to generate



156 Josué et al.

requirements composed of these words around the main word. Then we pass
the relay to our code generator.

Code Generation From Text

According to the RELATED WORK section, we will focus on Transformer-
based models. First, we will see how the Transformer works in general.

Transformer. The Transformer model has optimized the Recurrent Neural
Network (RNN) (Weiss et al., 2017), which was slow in processing due to
encoding and processing word-by-word of a sentence and could also forget
learned words if the sequence is long. There are three important points to
consider: position encoding, attention, and self-attention. Position encoding
refers to the idea of taking all the words in an input sequence of a sentence
and adding to each word a number corresponding to its order. Attention is
a mechanism that allows a text model to examine each word in the origi-
nal sentence when making a decision on how to translate the words in the
output sentence. Self-attention is done to build a model that understands the
underlying meaning and language patterns. The sequence can be considered
to capture this attention:

Attention(Q,K,V) = softmax

(
QKT

√dk

)
V

The rows of Q are referred to as “queries,” those of K “keys,” and finally
those of V “values.” Here, Q ∈ Rm∗dk , K ∈ Rn∗dk and V ∈ Rn∗dv . Note that
for the algebra to work out, the number of keys and values n must be equal,
but the number of queries m can vary. Likewise, the dimensionality of the
keys and queries must match, but that of the values can vary.

In our case, we will use GPT-3 (Brown et al., 2020) which is one of the
Transformers with very good performance in terms of code generation.

General Architecture of the Code Generator

In this section, we will explain the general architecture of our solution for
code generation from textual descriptione.

Figure 4 shows the overall architecture of our code generator. We have pre-
viously worked on a Multi-Agent System to create an intelligent webservice
(Rafalimanana et al., 2018). However, we have reused the same foundati-
ons to orchestrate the code generation modules. The difference between the
previous work and the present one is that we used Java, Netty, Grizzly, and
Jason RS-WS in the former, while in this work, we used SPADE BDI, XMPP,
and Python. This choice was made to facilitate the integration of the code
written in Python for the word embedding and the transformer.

SPADE has the behavior of executing tasks in parallel (Thread) with the
protocol provided by JABBER which allows transferring messages for each
event. We used this channel to receive and send messages for each agent.
The four agents have specific roles. The first is responsible for extracting
words around the inputs. Then the second is responsible for searching for the
software requirements that contain the words from the first agent. The third



Human Like Programming Using SPADE BDI Agents and the GPT-3-Based Transformer 157

Figure 4: General architecture of WSBL.

is responsible for generating code for the software requirements selected by
the second agent. And the fourth agent creates the root of the project and
copies the code into each respective file and places it directly in the web server
directory.

EXPERIMENTS, RESULTS AND DISCUSSION

In order to validate our hypothesis, we will detail in this section the experi-
ments we conducted to validate our model, as mentioned in the RELATED
WORK and METHODOLOGY sections. Compared to other deep learning-
based code generators, transformers have shown the best performance in
various fields, such as text and code generation, among others. However,
code generators are still limited to generating a few functionalities, and not
a fully usable application.

Validations Questions
The evaluation examines the following questions:

• Q1 : “What can be learned from the word extraction? Are there any other
approaches?

• Q2 : In comparison to the state of the art, how does our code generator
perform?

• Q3 : Is the generated application usable?
• Q4 : Does it take less time for development?

We chose Seq2Seq (Weiss et al., 2017) and TRANX (Yin and Neubig,
2018) because of their publicly available implementation, and for GPT-3
(Brown et al., 2020), we used the paid mode from OpenAI. However, the
parameters for GPT-3 () have other criteria, so we separated the parame-
ters for the evaluation of our model into two tables. For the Seq2seq model
(Weiss et al., 2017) and TRANX (Yin and Neubig, 2018), we used the



158 Josué et al.

Table 3. Parameters for evaluated approaches.
XXXXXXXXXXModels

Parameters
Embedding
Size

Hidden
Size

Epoch Batch
Size

Decoder
Dropout

Learning
Rate

Seq2seq 200 N/A 120 20 0.4 0.01
TRANX 128 256 100 10 0.3 0.001

Table 4. Parameter for GPT-3 approach.
XXXXXXXXXXModels

Parameters
Model Max

Tokens
Temperature Batch

Size
Epochs Learning

Rate
GPT-3 Davinci-

Codex
1024 0.7 4 3 5e-5

Table 5. Parameter for GPT-2 word embedding.
XXXXXXXXXXModels

Parameters
num
layers

d
model

num_
heads

batch
size

epochs learning
rate

max_
length

d _ff

GPT-2 12 768 12 32 3 5e-5 128 3072

hyperparameters from (Liu et al., 2020). In Table 3, we have the details of the
hyperparameters for the evaluation of our dataset. In Table 4, we have the
hyperparameters for GPT-3 for the evaluation and training of our dataset.

Q1. This is an evaluation on capturing semantics from input sequences.
And finally, Table 5 shows the hyperparameters for evaluation using the pre-
trained GPT-2 word embedding. It aims to provide the essential words that
group the functionalities to be generated. We opted directly for the case of
word embedding with the recommended parameters from OpenAI during
the training of our dataset. As a dataset, we simply took the software requi-
rements and used “Embed” dataset to creates a single column in the original
dataset containing vectors (lists) of N components.

Q2. This is about the performance of the approaches (Weiss et al., 2017),
(Yin and Neubig, 2018), and (Brown et al., 2020) in relation to our new
dataset. After the training phases, we carried out some tests on the genera-
tion of CRUD. Regarding the metrics we discussed in the METHODOLOGY
section, we have a drop in BLEU score between 0.086 and 0.096 for the
models (Weiss et al., 2017) and (Yin and Neubig, 2018). This indicates that
this drop in score shows that the generated code is far from the reference code.
On the other hand, the GPT-3 model has a better performance of 0.879. This
is due to the attention mechanisms that the transformer brings to capture
a large input set and the aligned codes at the same time. For both models
(Weiss et al., 2017) and (Yin and Neubig, 2018), of course, our dataset is
entirely new to them. Syntaxes and code styles can play a role in the results.
The only problem with GPT-3 is with the generated codes for the “Modify”
functionality. This still presents a bug in all the tests performed, as shown in
Table 7. And Table 6 shows the evaluation on the new dataset.

Q3.We enable to say if the generated code is usable for a developer. Even in
case of bugs, is the correction time-consuming or not. As already mentioned
in Table 6, only the CRUD tested with GPT-3 works. The codes are directly



Human Like Programming Using SPADE BDI Agents and the GPT-3-Based Transformer 159

Table 6. Evaluation results on New dataset.

Approaches BLEU on
new
Dataset

BLEU on
Django

Syntactically
Correct
Programs

Executable
Programs

Functionally
Correct
Programs

Seq2Seq 0.086 0.673 44.7% 6.0% 0%
TRANX 0.096 0.856 81.7% 9.0% 0%
GPT-3 0.879 0.952 86.8% 69.7% 54%
Average 0.353 0.827 71.06% 28.23% 18%

Table 7. Irrelevant tokens.

Languages Average errors per
generated code (tokens)

Seq2Seq 87.5%
TRANX 81.5%
GPT-3 18.9%
Average 62.63%

Figure 5: Comparison of a generated program with a reference.

usable on average 54%. Figure 5 shows a comparison between a reference
code and one generated by GPT-3.

We can see that the function name is not really correct but not entirely
wrong either. Then, there is a difference in the retrieval of the identifier. This
is normal, since the majority of the additions in our dataset do not have this
retrieval condition, but rather a direct addition of all attributes. We do not
capture this notion of relationship between class by foreign keys.

Q4. This study shows the interest of our objective to directly generate an
application. We have already shown the results for word embedding and the
code generator based on pre-trained GPT-3, as shown in Figure 5. Tables 6
and 7 show the performances of our models. To illustrate our result in this
section, we have set up a prompt for generating a simple program that creates
an article with a number, title, content, and date. This is part of a blog.

Figure 6 shows that our agent responsible for creating the root of the pro-
ject has completed its work. The immediate observation we made is that the



160 Josué et al.

Figure 6: Structure of the generated project.

Figure 7: Generated code.

code for deletion is not given. Additionally, codes like controllers do not work
because the necessary program headers need to be imported, such as models,
class Facades, and class Requests. The configuration in the “.env” file is also
not configured. The configuration of the routes file is not done either. The
time it took us to code the entire application was 50 minutes. So, we asked
two junior developers from the company to redo the same project. The first
developer completed the task in less than an hour and 58 minutes, and the
second one in 01 hour and 00 minutes.

According to this comparison between the generated program and the
two developers, our result showed an approximate gain of 15% to 20% in
development time.

CONCLUSION

Transformer models are very effective in generating code from text. By eva-
luating existing models compared to deep learning approaches with the new
dataset, this evaluation showed good performance of the GPT-3 model with
the Davinci model. The BLEU score shows high model performance at 0.879.



Human Like Programming Using SPADE BDI Agents and the GPT-3-Based Transformer 161

The generated code has only about 30% errors. We also used OpenAI’s pre-
trained word embedding to extract words around the main word. From these
models, we created an architecture for generating code from text. This arch-
itecture is orchestrated by SPADE BDI agents by extracting context words
from the prompt and generating the corresponding code. Before generating
the root of the project and placing each code in a file in the appropriate loca-
tion. Our architecture saves time compared to development, approximately
15 to 20%. Despite this performance, the architecture is not always able to
generate a complete functional application. The problem lies in the softw-
are requirements that contain both client demands and a functional problem
statement made by a developer. The descriptions of the requirements are not
explicitly stated in the narration. For the next steps of our research, we will
delve into generating code from a mock-up because the attributes are com-
plete and the features can be generated by modules. Also, an image is much
more explicit than text.

REFERENCES
Andrianjaka, R.M., Luc, R.J., Mahatody, T., Ilie, S., Raft, R.N., 2019. Restructuring

extended Lexical elaborate language, in: 2019 23rd International Conference on
System Theory, Control and Computing (ICSTCC). IEEE, pp. 266–272.

Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D., 2016.
Deepcoder: Learning to write programs. ArXiv Prepr. ArXiv161101989.

Beltramelli, T., 2018. pix2code: Generating code from a graphical user interface
screenshot, in: Proceedings of the ACM SIGCHI Symposium on Engineering
Interactive Computing Systems. pp. 1–6.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakan-
tan, A., Shyam, P., Sastry, G., Askell, A., 2020. Language models are few-shot
learners. Adv. Neural Inf. Process. Syst. 33, 1877–1901.

Dimbisoa, W.G., 2020. Génération automatique des IHM à partir de modèles
conceptuels selon l’approche MDE (PhD Thesis). Université de Fianarantsoa
(Madagascar).

Hu, X., Li, G., Xia, X., Lo, D., Jin, Z., 2018a. Deep code comment generation,
in: 2018 IEEE/ACM 26th International Conference on Program Comprehension
(ICPC). IEEE, pp. 200–20010.

Hu, X., Li, G., Xia, X., Lo, D., Lu, S., Jin, Z., 2018b. Summarizing source code with
transferred api knowledge.

Krawczyk, B., 2016. Learning from imbalanced data: open challenges and future
directions. Prog. Artif. Intell. 5, 221–232.

Kuang, L., Zhou, C., Yang, X., 2022. Code comment generation based on graph neu-
ral network enhanced transformer model for code understanding in open-source
software ecosystems. Autom. Softw. Eng. 29, 43. https://doi.org/10.1007/s10515-
022-00341-1

Le, T.H., Chen, H., Babar, M.A., 2020. Deep learning for source code modeling and
generation: Models, applications, and challenges. ACM Comput. Surv. CSUR 53,
1–38.

Levenshtein, V.I., 1966. Binary codes capable of correcting deletions, insertions, and
reversals, in: Soviet Physics Doklady. Soviet Union, pp. 707–710.

Liang, P., Jordan, M.I., Klein, D., 2013. Learning dependency-based compositional
semantics. Comput. Linguist. 39, 389–446.



162 Josué et al.

Ling, W., Grefenstette, E., Hermann, K.M., Kočiskỳ, T., Senior, A., Wang, F.,
Blunsom, P., 2016. Latent predictor networks for code generation. ArXiv Prepr.
ArXiv160306744.

Liu, H., Shen, M., Zhu, J., Niu, N., Li, G., Zhang, L., 2020. Deep Learning Based
Program Generation from Requirements Text: Are We There Yet? IEEE Trans.
Softw. Eng. 1–1. https://doi.org/10.1109/TSE.2020.3018481

Manku, G.S., Jain, A., Das Sarma, A., 2007. Detecting near-duplicates for web cra-
wling, in: Proceedings of the 16th International Conference on World Wide Web.
pp. 141–150.

Neelakantan, A., Xu, T., Puri, R., Radford, A., Han, J.M., Tworek, J., Yuan, Q.,
Tezak, N., Kim, J.W., Hallacy, C., 2022. Text and code embeddings by contrastive
pre-training. ArXiv Prepr. ArXiv220110005.

Papineni, K., Roukos, S., Ward, T., Zhu, W.-J., 2002. Bleu: a method for automatic
evaluation of machine translation, in: Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics. pp. 311–318.

Rafalimanana, H.F., Razafindramintsa, J.L., Ratovondrahona, A.J., Mahatody, T.,
Manantsoa, V., 2018. Publish a Jason agent BDI capacity as web service REST and
SOAP, in: International Conference on the Sciences of Electronics, Technologies
of Information and Telecommunications. Springer, pp. 163–171.

Ratovondrahona, A.J., Razafindramintsa, J.L., Rafalimanana, H.F., Mahatody, T.,
Manantsoa, V., 2018. Word Embedding : Machine Translation according to the
context. SETIT 18.

Razafimahatratra, H., Mahatody, T., Razafimandimby, J.P., Simionescu, S.M., 2017.
Automatic detection of coupling type in the UML sequence diagram, in: 2017 21st
International Conference on System Theory, Control and Computing (ICSTCC).
IEEE, pp. 635–640.

Razafindramintsa, J.L., Mahatody, T., Razafimandimby, J.P., 2016. Elaborate Lexi-
con Extended Language with a lot of conceptual information. ArXiv Prepr.
ArXiv160101517.

Tarehy, B.E., Mahatody, T., Razafindramintsa, J.L., Razafimandimby, J.P., 2017.
Reuse environment based on elaborate lexicon extend language, in: 2017 18th
International Carpathian Control Conference (ICCC). IEEE, pp. 310–315.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
\Lukasz, Polosukhin, I., 2017. Attention is all you need. Adv. Neural Inf. Process.
Syst. 30.

Weiss, R.J., Chorowski, J., Jaitly, N., Wu, Y., Chen, Z., 2017. Sequence-to-sequence
models can directly translate foreign speech. ArXiv Prepr. ArXiv170308581.

Yang, Y., Xia, X., Lo, D., Grundy, J., 2022. A survey on deep learning for software
engineering. ACM Comput. Surv. CSUR 54, 1–73.

Yang, Z., Keung, J., Yu, X., Gu, X., Wei, Z., Ma, X., Zhang, M., 2021. A multi-modal
transformer-based code summarization approach for smart contracts, in: 2021
IEEE/ACM 29th International Conference on Program Comprehension (ICPC).
IEEE, pp. 1–12.

Yin, P., Deng, B., Chen, E., Vasilescu, B., Neubig, G., 2018. Learning to mine aligned
code and natural language pairs from stack overflow, in: Proceedings of the 15th
International Conference on Mining Software Repositories. pp. 476–486.

Yin, P., Neubig, G., 2018. TRANX: A transition-based neural abstract syntax parser
for semantic parsing and code generation. ArXiv Prepr. ArXiv181002720.


	Human Like Programming Using SPADE BDI Agents and the GPT-3-Based Transformer
	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	Data Collecting and Processing
	Data Collecting
	Data Processing
	Manual Review
	Cross Validation by Software Testing
	Dataset and Quality

	Code Generation
	Understanding of Textual Description
	Code Generation From Text
	General Architecture of the Code Generator

	EXPERIMENTS, RESULTS AND DISCUSSION
	Validations Questions

	CONCLUSION


