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ABSTRACT

An assisted remote manipulation (ArM) platform has been defined for the Super Fra-
gment Separator (Super-FRS) main tunnel and hot cell at the High Energy Physics
(HEP) Facility of Anti-proton and lon Research (FAIR). The designed platform positi-
oned within a Virtual Reality (VR) based framework ensures dynamic collaboration
and effective human interaction to assist with Remote Handling (RH) operations. To
visually stimulate operator-assisted intervention in harsh environments, enhanced
interaction based on synthetic vision has been adapted with simultaneous localization
and mapping (SLAM) techniques interlinked with virtual layers representing a three
dimensional manipulation of RH maintenance tasks. The proposed platform also inclu-
ded a sequence mapping tool evaluated with RH task variables specific to the sequence
space analyses of path planning, motion check, and collision detection performed in
both real and virtual RH task environments. Further assistance was envisaged from
multimodal feedback categories through force feedback, in this case, a backpropa-
gation algorithm was tailored to define a force limit and to send feedback signals
to the operator every time the actual pattern exceeded the desired output pattern.
Overall, the ArM platform ensures the application of best engineering practices to RH
needs as a basis to maximize information gathering and sharing driven by continuous
improvement initiatives.

Keywords: Assisted remote manipulation, Remote handling, Synthetic vision, Backpropagation
algorithm

INTRODUCTION

The extension of the Facility for Anti-Proton and Ion Research (FAIR) has
resulted in an operational complexity increase from presently O(7?) (GSI) to
O(n* (FAIR)) due to the longer accelerator chains (Steinhagen, 2018). The
Super-FRS main tunnel and hot cell at the FAIR facility contain enclosed
environments far too hazardous for any manned maintenance. Therefore,
the operator needs to perform both transportation and manipulation of
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hazardous items at a distance, amongst predefined maintenance paths. This
function introduces the field of teleoperation in the context of Remote Hand-
ling (RH). Similarly, telemanipulation extends the RH concept further from
the most basic to high-level manipulation tasks.

The duty of performing maintenance tasks remotely requires human intel-
ligence attesting the operator rather than a computer in the control loop, as
quoted:

“a machine enabling a human operator to move about, sense and mech-
anically manipulate objects at a distance... generally, any tool which
extends a person’s mechanical action beyond his reach is a teleoperator”
(Sheridan et al. 1993).

At the forefront of every maintenance activity the human presence or fee-
ling of “being there” is highly dependent on the capability of the system
employed (Almeida, Menezes and Dias, 2020). This approach has been consi-
stent at the GSI facility through a “look and feel” approach provided for the
operator while interfacing with control programs (Krause, Schaa and Stei-
ner et al. 1992). Since the introduction of the control architecture in the late
seventies, control tools have also provided higher degree of abstraction and
modelling to facilitate operators’ handling tasks in real-time. Nowadays, this
approach continues offering to operators the opportunity of performing RH
repeatedly in a safe and reliable manner.

The Super-FRS handling scenario encompasses a target area, a hot cell and
a main separator open tunnel. The target area contains a heavily shielded
closed tunnel for positioned components that must be brought to the hot cell
by the hall crane and handling shielding flask system (Fs1, Fs2) illustrated
in Fig. 1. The hot cell layout combines two master slave manipulators and
a power manipulator with various general-purpose tools, whereas a mobile
robot platform enables RH in the main separator open tunnel.
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Figure 1: Super-FRS Target Area overview (Public Domain).

Furthermore, the careful intervention planning in radiation areas presents
enhancement opportunities from combined simulation measurements with
robotic tools engaged in transportation and dexterity manipulation.
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Enhancement herein is not considered in the condition of “perfecting”
or “optimizing” an entity end of state, rather a measurable enhancement
direction consisting of a measurable qualitative or quantitative parameter.
When a maintenance event is initiated, timing becomes the main issue for
both multisensory information integration and attentional processes (Martin,
Malpica, Gutierrez, Masia, and Serrano, 2022). This concern can sometimes
lead to multisensory overload that might hinder the manipulation experience.

Therefore, sensory and proprioception information must be synchronized
by balancing the creation of virtual simulated environments with the operator
inherent manipulation capacity. Advanced modelling with virtual simula-
tion allows to validate RH maintenance tasks, while minimizing task design
planning through equipment and process optimization. Furthermore, VR
technology induces in an organism targeted behaviour stimulated by artificial
sensors, (La Valle, 2019). The computational model alone does not represent
a complete VR system without the organic interaction experienced with arti-
ficial stimuli transmitted from the hardware. As a result, the stimulation of
human’s senses extends the VR engineering capability to the human physiolo-
gical and perceptual activity enabling many powerful interaction mechanisms
under a “Symbiotic” (S) condition interpreted as a Brain-Machine Interface
as shown in Table 1.

Table 1. Intelligent Levels (Adapted with permission from [Bezdek], Bezdek et al. 1994).

BI  Your software: the mind Cognition, memory and action: you
have them!

Al  Mid-level models: CI (+) Mid-level cognition in the style of
Knowledge Tidbits the mind

CI  Low-Level algorithms that reason Low-level cognition in the style of
computationally the mind

SI High-Level algorithms VR (+) High-level cognition in the style of
Near-Real Time Intuition the mind

This concept extends the levels of Intelligence (I), Artificial (A), Biological
(B) and Computational (C) to four levels A, B, C and S. This terminology
has been portrayed in the pyramid scheme within the assistive platform
interconnected data structures developed in Fig. 2.
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Figure 2: The Intelligent Pyramid of Knowledge (a), applied to the ArM Structure (b).
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The ability of VR has extensively been adopted in manufacturing robotic
applications (Eswaran and Bahubalendruni, 2022), medical (Zhou, Zhang,
Feng, Zhao and Fu, 2018) and space applications (Hulin, 2021) and deep
imitation learning capabilities (Zhang, 2017). With a proven record in HEP
facilities, simulation in VR nowadays form the backbone of RH training, veri-
fication and validation of maintenance tasks (Dominguez, 2017). The Super-
FRS ArM platform allows a full integration of interactive multimodal stimuli
and combinatory sensory feedback. The operator’s interaction responsiveness
was also investigated by mapping individual RH tasks through direct-based
visualization within a spatially aligned model. (Szalavari, Schmalstieg, Fuhr-
mann and Gervautz, 1997) The benefit of this approach enabled to explore
decision uncertainty in terms of degraded accuracy, latency and low feedback
update rate anchored to the operator inherent near-real-time cognitive state
(Bryson et al. 2003).

ASSISTIVE DESIGN ELEMENTS

The design of the assistive platform begins with the analysis of the RH Spe-
ctrum (RHS) exhibiting the “unknown vs hazardous” process, the spectrum
provides a good basis to develop a process to optimize operation and main-
tenance activities (Amjad, 2018). The process model depicted in Figure 3
emphasizes an RHS extension diving into the environment where a high
level of radiation presents a real challenge when maintenance needs to be

addressed.
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Figure 3: The RHS of Unknown vs Hazardous (a), developed ArM assistive elements (b).

In the maintenance domain, decision support relates to the situational
awareness concept and underlying cognitive processes. Therefore, emphasis
will be placed on a human-centered simulation approach and the associa-
ted psychological processes of the target tasks (Kozlowski and DeShon et al.
2004). In practice, the RHS is extended into a world including two outer edge
working zones. Since, this definition is a way to mimic decision-making, to
capture the operator’s knowledge level, the definition of reasoning zones is
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considered most relevant, for recognizing a situation or coping with the unfo-
reseen. The shaped sides of the outside world are seen as distributed across
the operator, artifacts, and time setting (Hutchins et al. 1995). From this per-
spective, a distributed viewpoint of cognition regarding the operator actions
and information processing of the RHS has been categorized as a processor

with stimuli/response elements as shown in Table 2.

Table 2. ArM assistive elements and modules.

Elements Primary Level Secondary Level ArM Module
Sensing Interacting with Seeing, hearing, Virtual Reality
the environment touching, measuring
distance
Effectors Interfacing with Producing signal / Synthetic Vision
the environment information or
moving about
Interpreting  Interpreting Information acquired Sequence Mapping
information by through perception
means of
intelligence
Generating Influencing Direct actions (as Corrective
environment by manipulating, Feedback
means of assembly) and (Multimodal e.g.
intelligence Indirect actions (as Visual. Haptic,

language / picture Tactile)

generation)

The coordination of senses both visual and motorial is organized according
to the operator’s activity task at hand. At this point, the operator’s handling
task and VR task-relevant information must be designed when perception
and action coincide at the same time for manoeuvrability and dexterity acti-
vities. The operator’s proprioception is engaged by directly mapping physical
movements to a noticeable output in space, causing them to feel present in a
virtual environment.

HUMAN FACTORS

The effects of sensory response on VR task were taken into consideration
with the aim of offering a larger and richer spatial arrangement to the opera-
tor. The opportunity of bringing spatial cognition into VR was reinforced by
bringing in direct manipulation training. This capability enabled the opera-
tor to adopt external spaces to extend spatial accuracy, spatial response, and
spatial manipulation (Andrews, Endert, and North, 2010).

Improved task completion performance was shown through the combi-
nation of visual and haptic information rather than haptic feedback alone
without proprioceptive neural coordination. Therefore, to improve intera-
ction efficacy the operator-VR interface transfer points had to be shifted
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transforming the classical representation from a human-machine system to
a human-virtual machine system.

In this context, the level of knowledge gained by the operator might not
be sufficient to conduct time stamp RH tasks. For this reason, assistive vir-
tual layers were created upon the task response time divided according to
time-based event information using perceptual stimuli and tasks as shown in
Figure 4.
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Figure 4: Classification and Validation Loop of Maintenance Learning Tasks.

Each broadcasted event was classed according to task-related stimuli, spe-
cifically to stresses influencing memory retrieval (Shields et al., 2017), spatial
orientation (Keller et al., 2020) and decision-making tasks.

« Recognition Memory Tasks where the operator learns to recognize locali-
zed sequential targets from a virtual environment map.

« Spatial Orientation Tasks enabling the operator to orient specific compo-
nents in predefined locations.

« Decision Making Tasks allowing to prioritise maintenance classification
schemes.

The inter-correlation of each task indicated in the loop is intended to high-
light cognition distributed in both direct and indirect manipulation. While
direct manipulation allows to create rapid responses with greater flexibility, it
proves beneficial also to common indirect manipulation practices. These pra-
ctices are commonly adopted in graphical environments where the change of
state of an object respond to control exerted by manipulating another object.

This degree of association is paramount to anchored RH task results repor-
ted on subjective authority assessment protocols and metrics such as fidelity,
confidence, usability, and reliability. The loop is intended to supply RHS
and sequence-based metrics for individual RH tasks between the operator’s
taskwork and appraised observer teamwork. This form of mediated cognition
and collaboration is considered in terms of collaborative mitigation/adapta-
tion of actions/responses. In this innovative context, the ArM is positioned
to enhance interaction, decision-making and control potential actions trigge-
red by uncertainty, as guided by the distinguished “simulative model-based
reasoning” approach (Nersessian et al., 2002).



192 Compierchio et al.

PLATFORM

The design of the ArM platform follows a State-of-The-Art study tailored to
fulfill the Super-FRS RH requirements whilst ensuring the integration of RH
tasks into the facility’s phase of operation and maintenance. The functionality
of the RH system is integrated in a closed-loop structure where the operator is
able to perform maintenance with assistive modules as indicated in Figure 5.
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Figure 5: The ArM intelligent closed loop model.

Assistive modules allow the operator to fulfil maintenance actions synch-
ronized with virtual layers created from the facility White Rabbit event gene-
rator through direct manipulation visualization techniques. Since RH tasks
are subjected to time constraint, the conflict between accuracy and respon-
siveness is mitigated through a time variance model. In addition, unexpected
behavior of manipulation contact points has been explored with extracted
manipulation primitives to ensure verification, validation and integration of
each task.

The advantage to impart training via direct manipulation allowed the
operator to develop interaction responsiveness abilities and time-critical
maintenance skills indispensable in radiation areas.

VISION SYSTEM

The increasing pace of using VR to train operators for industrial maintena-
nce and assembly elicited the bringing of virtual information directly to the
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workplace. The proposed use of synthetic glasses provided the operator with
a clearer and more intuitive knowledge of the operational state of the Main
Tunnel Remote Handling (MTRH) system equipment and the hot cell dispo-
sal area (Amjad, 2016). Synthetic vision ensures a meaningful evaluation of
the usability and effectiveness of the live 3D model of the environment under
typical harsh conditions, as the visualized radiation shown in the hot cell
window-less in Figure 6.
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Figure 6: Working area of as operator wearing Augmented Reality Glasses.

While SLAM captured and maintained the mapping of the robot’s geo-
metric features for optimized and localized 3D representation. In addition,
the synthetic vision system allowed monitoring for a possible collision of the
elbow of a tele-manipulator in 3D without any camera views.

SEQUENCE MAPPING

Generated sequences are employed to analyze the Master-Slave motion and
kinematics of the manipulator when conducting RH maintenance actions.
Sequence mapping is critical to the functionality of the task (Wang, Ma and
Cheng, 2015). This temporal component is being considered for each sequ-
ence step on a recursive basis, mapping the operator’s state # to time ¢ + 8¢
on the robot. These features starting from the location place are evaluated
with specific activities and state’ actions for each step. As a proof of concept
of the selected approach, sequence performance steps are customized to a set
of pre-defined variable thresholds. A Neural Network (NN) model is imple-
mented using variables specific to sequence space analyses as path planning,
motion check, collision detection, and RH device weight parameters that
are representative of a normal and safer RH task sequence. Compared to
other methods (decision trees), building a NN model based on these features
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ensures a normal sequence operation and allows to highlight anomalous
data and operational changes in the input-output distribution. This approach
has been extensively used in industrial applications process monitoring and
control (Saucedo-Dorantes, Elvira-Ortiz, Jaen-Cuéllar, and Toledano-Ayala,
2021). For a typical disassembly-and-assembly operation, task stages are fed
to the NN training model presented in Figure 7.
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Figure 7: Typical RH stages data inputted to a NN algorithm.
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The NN model is data-driven and appropriate sensitivity is sought in terms
of the appropriate size (number of nodes) used and the level of novelties
flagged as quantization errors (QE) by the tool. The declaration of the novelty
of any drift and rapid changes indicated in the measurement, exceeding a pre-
defined threshold is bounded by a switching point represented by the middle
sky cross point between the two centres. The threshold compliance has been
defined according to the 3-sigma rule.

CORRECTIVE FEEDBACK

At the Super-FRS hot cell, the manipulation learning process relies on the
operator ability to anticipate the size, weight, shape and feel of the physical
object during manipulation. In this context, visual cues and sensorimotor
memories are largely responsible for the propagating torque compensation
errors.

These finding are mainly subdued to the dynamic effects of weight com-
pensation and force scaling (Schneider, Buckingham and Hermsdorfer, 2020).
The predictive scale of the applied force was appraised with a novelty simu-
lation approach based on a supervised learning backpropagation algorithm.
The trained NN algorithm would ensure a constant and controlled force
applied to each manipulative action as a function of the task sequence. Since
the state of a task is associated to the state of the components, at every change
of state, the assembly and disassembly process of a component is further divi-
ded into small subprocesses (Dominguez, 2017). At this stage, each featured
subprocess step sequence is divided further as a function of the applied force
and projected on a backpropagation algorithm as shown in Figure 8.
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Figure 8: Task sequence and applied force (a), backpropagation principles (b).

The backpropagation algorithm employs a pattern learning rate melding
the sensorial force and time sequence. Each subprocess sequence is catego-
rized according to the input pattern Y(#). When the manipulation task is
performed by a different operator the actual measured force Y’(#) may differ
from the desired output Y(#). Therefore, for each task sequence function, a
learning rule must be established for adjusting the weights/threshold to get
the actual output approximation to the desired Y(#) “feeding force”.

CONCLUSION

The development of concepts and strategies at the Super-FRS is set to conti-
nue during the Hardware and Beam commissioning stages, with RH activities
set to be integrated right from the beginning and deal with problems as they
appear, to avoid increasing costs and time delay until the problem is disco-
vered and resolved (Steinhagen, 2018). In this context, assistive modules
were formulated to address real-time interventions with improved situati-
onal awareness and by blending physical reaction forces with the required
manipulation dexterity.

The implementation of direct manipulation contributed to a better under-
standing of manipulation planning problems with the creation of active
virtual layers for balancing demanding RH requirements with the opera-
tor cognitive and physical capacity. The presented ArM concept unfolds
distributed intelligence into highly automated RH systems.
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