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ABSTRACT

In the industry 4.0 era, industrial production is designed to be more efficient, more fle-
xible, and with higher quality. Besides, it is characterized by greater automation and
computerization. However, in the industrial field, workers are still involved in many
jobs requiring them to lift and move heavy items and other production activities that
expose them to the associated risk factors for developing work-related musculoske-
letal disorders (WMSDs). In physical ergonomics, studies have shown potential for
preventing WMSDs through artificial intelligence (AI). In this regard, this literature
review aims to establish the current state of art regarding the use of AI to reduce the
risk of developing WMSDs. A literature review was carried out in two databases, and
through the combination of keywords, 188 articles were found. Twenty-eight papers
were retrieved and analyzed based on dimensions related to WMSDs risk factors,
ergonomic criteria, and AI applications.

Keywords: Artificial intelligence, Work-related musculoskeletal disorders (WMSDs), Physical
ergonomics

INTRODUCTION

Physical ergonomics is a discipline that considers a human-centric approach
to designing a working environment or a job, by adapting work to the worker
- the “Fitting the Job to the Worker” concept (Grandjean, 1986).

In the industrial field, workers are still involved in many jobs that require
them to lift and move heavy items and in other production activities that
expose them to the associated risk factors for developing work-related
musculoskeletal disorders (WMSDs). WMSDs are disorders of the ten-
dons, muscles, joints, nerves, and circulatory system that develop over time
through overuse and are caused or aggravated by work or the work envi-
ronment (Nunes and Bush, 2012). In Canada, WMSDs represent 43% of
occupational injuries, 43% of compensation costs, and 46% of days lost
(AWCBC, 2018). The annual cost of WMSDs to the Canadian economy
is estimated to be approximately $8.7 billion (Public Health Agency of
Canada, 2018).

Epidemiological studies generally define three groups of WMSD risk
factors (Nunes and Bush, 2012): 1) Physical risk factors that include
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repetitive work, awkward postures, static postures, physical workload, and
exposure to vibration; 2) Psychosocial risk factors that relate to the organiza-
tional aspects of work such as low decisional latitude and high psychological
demands; 3) Individual risk factors about worker sociodemographic profile
(e.g., age, gender) or lifestyle (e.g., obesity, level of physical activity).

Preventing risks associated with WMSDs can be accomplished through
the ergonomic redesign of the workplace, work processes, and tools. How-
ever, this can only be achieved by identifying the risk factors present,
which requires collecting and analyzing relevant work data to perform
a proper risk assessment. For this purpose, artificial intelligence (AI) is
increasingly used and has shown potential in preventing WMSDs, through
the analysis of large amounts of human-related data. Due to the deve-
lopment of direct measurement methods, including wearable systems and
computer vision-based techniques, new opportunities have emerged for col-
lecting a wide variety of relevant muscular, physiological, and kinematic
parameters allowing the acquisition of data related to the workers in an
automatic, continuous, and non-intrusive way (De Fazio et al., 2023).
For example, wearable devices equipped with sensors and AI algorithms
have been used to monitor workers’ postures and movements in real-time
(Akanmu et al., 2020).

Donisi et al. (2022a) suggested that AI plays an important role in preven-
tingWMSDs by providing early warning of potential problems and providing
a more detailed understanding of the factors that contribute to the deve-
lopment of WMSDs. However, more research is needed to understand the
effectiveness of AI in this area. In this regard, this paper aims to conduct a
narrative review of the scientific literature to answer the following primary
research question: “What is state of the art about the application of AI tech-
niques used for the prevention of WMSDs?”. In addition, some secondary
research questions are defined to assist this literature review: 1) Which AI
techniques have been proposed for the prevention of WMSDs purposes in
the scientific literature? 2) Which WMSDs risk factors have been evaluated
using these AI techniques? 3) Which ergonomic criteria have been at the basis
of these AI applications?

METHODOLOGY

The narrative review described in this paper follows the PRISMA (Prefer-
red Reporting Items for Systematic Reviews and Meta-Analyses) statement
(Moher et al., 2009). This allowed identify, select, assess, and analyze relevant
studies answering our primary and secondary research questions.

Compendex and Inspec were searched for this review from inception to
December 2022. Each database was queried using the following keyword
structure: (“physical ergonomics” OR “Work-related musculoskeletal disor-
der”) AND (“Artificial Intelligence” OR “Machine learning” OR “Deep
Learning” OR “Expert Systems” OR “Fuzzy Logic” OR “Natural Langu-
age Processing”). The keywords were searched in the titles and abstracts. A
title or abstract that contained one term from each group of keywords was
eligible for this review.
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Figure 1: Summary review workflow.

To simplify our research, the exclusion criteria were:

• Conference proceedings, book chapters, and dissertation
• Papers with no full-text access;
• Papers duplicated.

Concerning the screening by title, abstract, and full text, the following
exclusion criteria were defined:

• Papers focusing on daily living activities, fitness, sports, athletics, and
clinical rehabilitation.

• Papers proposing only frameworks for activity/posture recognition or
body angle or joint torque estimation.

• Papers presenting only datasets for working activities/postures.
• Papers that were not relevant or out of scope.

Figure 1 summarizes the PRISMA workflow, the exclusion criteria, and
the number of studies included in this literature review.

RESULTS AND DISCUSSION

The narrative review includes 28 papers divided into journal articles (14 out
of 28) and conference papers (14 out of 28).

Excluding the current year, over 80% of the studies reviewed (23 of 28)
were published in the previous five years (2018–2022). This trend confirms
a recent and growing interest in this area of research.

The papers were analyzed according to several categories: WMSDs risk
factors and data sources for AI development; principles, methods, standards,
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and guidelines underlying the ergonomic assessment; AI strategy and algori-
thms. Table 1 shows the papers in alphabetical order by authors.

• WMSDs risk factors:

In this review, all papers analyzed physical risk factors, and the most fre-
quently assessed factor was the physical workload closely linked to physical
fatigue. Recently, AI techniques have been used to classify physical fatigue
states and prevent WMSDs. An SVM approach was introduced by Baghdadi
et al. (2018) to identify variations in gait parameters recorded by weara-
ble sensors and categorize the states into either fatigued or non-fatigued.
In Hernandez et al. (2020), deep learning-based models were used to eva-
luate the fatigue factor in manual material handling operations using 3D
motion capture data. Manjarres et al. (2019) suggested a configuration com-
posed of human activity recognition system and heart sensor to track physical
workload.

Other studies have examined body posture as a physical risk factor. Some
studies used wearable devices to evaluate the adoption of awkward postu-
res during different tasks. In particular, the IMU sensors by Akanmu et al.
(2022) and Villalobos et al. (2022), the insole sensors by Antwi-Afari et al.
(2022), and the Flex sensors by Estrada et al. (2020) were proposed explicitly
assessing tasks requiring awkward postures. Computer vision for ergonomic-
postural assessment is also used for data collection and analysis. Chan et al.
(2020) found classification accuracies of 80 to 90% when extracting and
using the key joints of the human body and data augmentation. Chatzis
et al. (2022) introduced a novel approach based on DL models for action
segmentation in RGB-D images and subsequently for predicting the REBA
ergonomic risk score during object manipulation actions. Cai et al. (2022)
also evaluated the potential WMSDs in the construction sector by using
vision-based extracted 3D skeletal poses of workers to evaluate the OWAS
ergonomic risk score. In their study, Papoutsakis et al. (2022) developed a
classification system to analyze posture-related risks based on visual data.
Additionally, they assessed the relationship between physical load and heart
rate activity.

There have been additional studies that shed light on different risk factors.
Nath et al. (2017) developed a model that deploys built-in smartphone sen-
sors and machine learning algorithms to recognize workers’ activities, and
extract duration and frequency information, to evaluate ergonomic risks
associated with each activity. Aiello et al. (2022) combined tri-axial accelero-
meter data and a machine learning classifier to identify workers’ movements
and assess the associated vibration risk exposure.

• Ergonomic criteria:

The ergonomic criteria quoted in the reviewed studies were heterogeneous.
Some studies referred to the Borg Rating of Perceived Exertion (RPE), which
is a subjective scale of perceived exertion used to rate the level of physical
exertion during physical activity (Borg, 1970). By using the Borg scale to
label gait data, Karvekar et al. (2019) developed machine learning models to
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classify the individuals’ gait into two (no-vs. strong-fatigue) and four levels
(no-, low-, medium-, and strong-fatigue). To assess manual lifting tasks, four
studies considered the Revised NIOSH Lifting Equation (RNLE), a manual
material handling risk assessment method associated with lifting and lowe-
ring tasks. Donisi et al. (2022b, 2022c) presented tree-basedmachine learning
algorithms to classify risk according to the RNLE (“No Risk” and “Risk”)
by combining height, frequency, and weight variables of lifting tasks. Simi-
larly, Zhou et al. (2021) proposed two different risk levels (safe (LI<1); unsafe
(LI>1)) determined by the RNLE. They developed a prediction module con-
sisting of a logistics regression model capable of distinguishing the injury risk
levels induced by different levels of force exertion in common lifting tasks.
Trkov et al. (2022) used RNLE to analyze six lifting activities, to demonstrate
the ability of the machine learning classifier.

Two studies (Cai et al., 2022; Hida et al., 2022) used the Ovako Work
Posture Analysis System (OWAS) as a reference to classify workers’ postures.
The OWAS method is used to identify postures that are safe or unsafe and
may result in WMSDs.

In this review, another guideline for ergonomics was identified to mitigate
the risk ofWMSDs, which is proposed by theOccupational Safety andHealth
Administration (OSHA) (Delp, et al., 2014). Antwi-Afari et al. (2020) asses-
sed the ergonomic risk levels (“Low,”“Moderate”, and “High”) using OSHA
standards based on the weight of the object. On the other hand, Nath et al.
(2017) evaluated the same ergonomic risk levels by considering the duration
and frequency of pushing/pulling, carrying/lowering/lifting activities.

Other studies used different principles, methods, standards, and guidelines
for ergonomic risk assessment, in particular: Firmat’s score (Manjarres et al.,
2019), ISO 5349–2001 (Aiello et al., 2022), ISO 11226–2000 (Antwi-Afari
et al., 2021), Key Indicator Method for Manual Handling Operations (KIM-
MHO) (Chan et al., 2020), Muri Ergonomic Waste tool (Papoutsakis et al.,
2022), Postural Ergonomic Risk Assessment (PERA) (Akanmu et al., 2020),
Rapid Upper Limb Assessment RULA (Rivero et al., 2015, Villalobos et al.,
2022), Rapid Entire Body Assessment (REBA) (Chatzis et al., 2022).

Few studies did not mention any known ergonomic methodology but pro-
posed specific principles or categories based on experts’ knowledge: Estrada
et al. (2020), Olsen et al. (2009), and Walsh, et al. (2006) classified the
sitting posture as ergonomically correct and incorrect by using wearable sen-
sors. Steiner, et al. (2009) specified different strain classes, and a respective
working scenario has been created for each.

• Artificial intelligence strategies:

In the included articles, the distribution of the AI strategies adopted is as
follows: fourteen studies applied ML, seven studies applied DL, four studies
applied both ML and DL, and three studies applied FL. The most frequen-
tly employed algorithms were Support Vector Machines (SVM) and Decision
Trees (DTs), followed by Random Forest (RaF), k-Nearest Neighbors (KNN),
AB AdaBoost tree, Long Short-Term Memory (LSTM), Linear Regression
(LR), Gradient Boosted tree (GBT), Rotation Forest (RoF), Gated recurrent
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Table 1. Analysis of the studies included in the review.

Auteurs Data source for
AI development

WMSDs risk
factors

Ergonomic
criteria

AI strategy
(algorithms)

Aiello et al.
(2022)

Tri-axial
accelerometer

Hand-arm
transmitted
vibration

ISO 5349
(2001)

ML (KNN)

Akanmu et al.
(2020)

IMU sensors Body posture PERA ML
(Reinforcement
learning algo.)

Ani et al. (2019) N.S Physical
workload

N.S FL

Antwi-Afari et al.
(2020)

Insole sensors Repetition OSHA ML + DL (DT,
RaF, KNN, SVM,
ANN)

Antwi-Afari et al.
(2022)

Insole sensors Body posture ISO 11226
(2000)

DL (LSTM,
Bi-LSTM, GRU)

Baghdadi, et al.
(2018)

IMU sensors Physical
workload

Borg Rating ML (SVM)

Cai et al. (2022) Videos Body posture OWAS DL (LSTM)
Chan et al.
(2020)

Videos (public
data collection+
recordings)

Body posture KIM-MHO DL

Chatzis et al.
(2022)

RGB images Body posture REBA DL

Donisi et al.
(2022b)

EMG sensors Physical
workload

RNLE ML + DL (DT,
RaF, RoF, AB,
GBT)

Donisi et al.
(2022c)

EMG sensors Physical
workload

RNLE ML + DL (DT,
RaF, RoF, AB,
GBT)

Estrada, et al.
(2020)

Flex sensors Body posture Experts ML (DT)

Hernandez, et al.
(2020)

HR sensors+
marker-based
motion capture

Physical
workload

Borg rating DL (LSTM, GRU)

Hida e al. (2022) Motion capture
system

Body posture OWAS ML (KNN, SVM)

Karvekar et al.
(2019)

IMU sensors Physical
workload

Borg rating ML (SVM)

Maman et al.
(2020)

IMU + HR
sensors

Physical
workload

Borg rating ML (LR, SVM,
RaF)

Manjarres et al.
(2019)

HR sensor Physical
workload

Frimat’s score ML (RaF, KNN)

Auteurs Data source for
AI development

WMSDs risk
factors

Ergonomic
criteria

AI strategy
(algorithms)

Nath, et al.
(2017)

Body-mounted
smartphone

Repetition OSHA ML (SVM)

Olsen et al.
(2009)

Inclinometers Body posture Experts ML+DL (AB,
SVM, LVQ, KNN,
ANN)

Pancardo, et al.
(2018)

HR sensor Physical
workload

Borg rating FL

(Continued)
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Table 1. Continued

Auteurs Data source for
AI development

WMSDs risk
factors

Ergonomic
criteria

AI strategy
(algorithms)

Papoutsakis et al.
(2022)

RGB video, HR
sensor

Body Posture
+ Physical
workload

Muri
Ergonomic
Waste tool

DL (CNN, RNN)

Rivero et al.
(2015)

N.A Body posture RULA FL

Steiner, et al.
(2009)

ECG + EMG
sensors

Physical
workload

Experts ML (DT)

Trkov et al.
(2022)

Insole sensors+
Accelerometers

Physical
workload

RNLE ML (Single DT,
KNN, SVM, NB)

Villalobos et al.
(2022)

IMU sensors Body posture RULA ML (DT, SVM,
RaF, ET)

Walsh, et al.
(2006)

Marker-based
motion capture
system

Body posture Experts ML (DT)

Yu et al. (2018) RGB images+
Insole
sensors+IMU
sensors

Physical
workload

N.S DL

Zhou et al. (2021) Videos (body
movement/
posture and facial
expression)

Physical
workload

RNLE ML (binary LR)

Abbreviations: AB = AdaBoost; AI = Artificial Intelligence; ANN = Artificial Neural Network;
CNN = Convolutional Neural Network; DL = Deep Learning; DT = Decision Tree; EAWS = European
Assembly Work Sheet; ECG = Electrocardiography; EMG = surface Electromyograph; ET=extremely
randomized trees; FL: Fuzzy logic; GBT = Gradient Boosted tree; GRU: Gated recurrent units;
HR =Heart Rate; IMU = Inertial Measurement Unit; ISO = International Organization for Standardiza-
tion; KIM-MHO=Key IndicatorMethod forManual Handling Operations; KNN=K-Nearest Neighbor;
LR = Linear Regression; LSTM = Long Short-Term Memory; LVQ = Learning Vector Quantization;
ML= Machine Learning; N.A. = Not Available; NB= Naive Bayes; NIOSH = National Institute for
Occupational Safety and Health; OCRA = Occupational Repetitive Actions; OSHA = Occupational
Safety and Health Administration; OWAS = Ovako Working Posture Analysis System; PERA = Postural
Ergonomic Risk Assessment; REBA = Rapid Entire Body Assessment; RaF = Random Forest; RGB= red,
green, blue; RNLE = Revised NIOSH Lifting Equation; RNN= Recurrent neural network; RoF = Rota-
tion Forest; RULA = Rapid Upper Limb Assessment; SVM = Support Vector Machine; WS= wearable
sensors.

units (GRU), Artificial Neural Networks (ANN), Naïve Bayes (NB) clas-
sifiers, Recurrent neural network (RNN), Convolutional Neural Network
(CNN), and Learning Vector Quantization (LVQ).

In terms of accuracy, several algorithms showed high values. Among the
ensemble classifiers, RaF was the best algorithm showing accuracy values
above 90%. According to Antwi-Afari et al. (2020), the accuracy in iden-
tifying activities related to overextension was 97%. On the other hand,
Manjarres et al. (2019) reported an accuracy of 97.7% in identifying acti-
vities performed by volunteer participants. The best results for KNNs in the
classification of hand-arm transmitted vibration exposure in terms of accu-
racy (98%) were reached by Aiello et al. (2022). Another strong result is
obtained from Antwi-Afari et al. (2022), detecting awkward posture using
GRU and reaching an accuracy of 99%. Olsen et al. (2009) achieved an
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accuracy rate of 99.94% using a KNN algorithm to categorize postures as
ergonomically correct or incorrect.

CONCLUSION

This article presents a narrative review of the use of AI for WMSD preven-
tion purposes, selecting 28 relevant studies from the scientific literature. The
analysis highlighted a deep interest, which has grown in recent years, in using
AI algorithms (mainly ML and DL) to monitor the physical risk factors to
which workers are exposed during their activities. This review provides the
researchers with a summary of the most recent applications of AI to reduce
the risks of developing WMSDs.
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