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ABSTRACT

For patients scheduled for surgery, long waiting times are unpleasant. However, sche-
duling that is too patient-oriented can lead to friction losses in the operating room and
waiting times for the medical personnel. We have conducted an analysis of historical
hand surgery data to improve forecasting of hand surgery durations, optimize ope-
ration room scheduling for physicians and patients and reduce overall waiting times.
Several models have been evaluated to forecast surgery durations. A quantile-based
approach based on the distribution of surgery durations has been tested in a schedu-
ling simulation. This approach has indicated possibilities to gradually balance waiting
times between patients and medical personnel. Within a field trial, a trained regression
model has been successfully deployed in a hand surgery operation center.
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INTRODUCTION AND MOTIVATION

Hospitals must balance the interests of both their personnel and their patients
while additionally taking economic factors into account. One major expense
for hospitals is the operating room (OR) and its connected costs (Rothstein,
2018). To improve OR efficiency, it is beneficial to minimize idle times betw-
een surgeries as much as possible (Childers, 2018). At the same time, for the
benefit and positive outlook of the patients, it’s important to keep patient
waiting times as low as possible. In this paper we focus on the “short term”
(few days) and “very short term” (24-48 hours) time horizons for the OR
scheduling problem as defined in (May, 2011). The challenge is to improve
the flow in the operation room, especially in the outpatient surgery center.
For the scheduling problem, there are two overall objectives (i) to minimize
patients waiting times under the constraint of (ii) having no additional idle
time in the operating room and on the medical personnel. The central point
being can we find an approach to achieve the objectives and also gradually
adjust and balance probabilities where waiting will occur.

SURGICAL DATA SET

The regarded data set included over 8400 hand surgery procedures in the
period from January 2019 to September 2022 and was exported from a
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hospital information system (HIS). This data has been used as a basis to
analyze and test different machine learning (ML) models and approaches.

PREDICTION OF SURGERY DURATION

Key aspect for enabling effective OR scheduling is to be able to correctly
predict expected surgery durations (Huang, 2020). One difficulty regarding
the dataset was that it consisted predominantly of categorical variables (e.g.,
type of operation or diagnosis) which required careful feature engineering.
Several combinations of feature sets and ML algorithms have been tested.

For the prediction of surgery durations, there have been two relevant mea-
sures: (i) time from the first cut until stitching of the patient (excluding time
for changing the OR) and (ii) patient to patient, including these changing
times. During our analyses we have seen that changing times were quite con-
stant regardless of other factors (as described in more detail in the correlation
analysis). Therefore, we focused on the prediction of (i) the time from cut
to stitch. Following, we will refer to this duration as the prediction target
variable CS_time.

INDEPENDENT VARIABLES AND DATA PREPROCESSING

Within the raw data set there were 52 independent variables that were extra-
cted from the HIS. Some procedures have been filtered because they were not
relevant or non-representative, such as needle fasciotomies since they were
not conducted within the OR.

One hypothesis was, that the experience of the individual surgeon condu-
cting surgery is an impactful predictor for surgery duration. Therefore, we
set up an additional variable “doc_class” containing four categories:

« highly experienced surgeons

. experienced surgeons

. medical specialists at the beginning of training
. rotational physicians.

Further important variables tested in different models were the operation
type “ops”, the main diagnosis “icd” and the weekday variable “wtag”. The
categorical variable ops identifies 77 unique operation types within the data
set. The variable icd has 92 unique occurrences in the data set (and 46 missing
rows). The categorical variable wtag contains codes for workdays Monday
through Friday.

STATISTICAL ANALYSIS OF SURGERY DURATION

To gain a better understanding of CS_time across different operation types,
we conducted a statistical analysis across different operation types. The rati-
onale was, that operation type might also be a strong predictor for CS_time.
Also, there might be operation types with a lower deviation, that might
be good to predict by using averages. In Figure 1, the standard deviation
also increases with increasing mean. However, this “clustering” in mean and
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Figure 1: Mean (x) and the standard deviation (y) of CS_time for each operation type
(shown as a dot). Size resembles number of operations of a particular type.

standard deviation did not appear to be purposeful for creating a new vari-
able (i.e., cluster), since all operation categories were evenly distributed for
scheduling operations.

CORRELATION ANALYSIS AND DATA RELATIONSHIPS

Since the overall data set is predominately categorical, correlation analysis
has initially focused on finding correlations and strong predictors on the
existing numerical data available, i.e., patient’s age and changing time betw-
een surgeries. One analysis that we conducted was correlating the patients’
age with CS_time, grouping for each operation type. The overall correla-
tions showed no strong correlations between age and duration of surgery.
There were some correlating outliers, but those were not considered due to
the small sample size of the operation type. Furthermore, considering groups
by doc_class (so, surgeon experience) showed no strong correlations between
age and CS_time.

An additional aspect was the correlation between CS_time and “changing
time”: the time for preparation before an operation and follow-up work after
the operation has ended. Here it showed, that regardless of the CS_time, the
changing time has been quite constant (in our data roughly 23 minutes from
stitch until next patient’s cut), so also no correlation in this regard.

We regarded the relationship between day of the week and duration of the
operation. As shown in Figure 2, the boxplot shows the distribution by day
of the week and experience level. There are indications that the weekday vari-
able “wtag” holds information, we see that e.g., surgery durations tend to be
shorter on Fridays. However, we cannot confidently say that this effect comes
from surgeries taking less time or that shorter operations were scheduled on
Fridays in the historic data.
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Figure 2: Patient to patient times (CS_time plus “changing time”) by weekday and
surgeon experience.

REGRESSION ANALYSIS AND MODEL COMPARISON

In this section we present the results of training and evaluating different
regression models and feature sets to predict the operation duration CS_time.
For this purpose, we chose to evaluate different variants of linear regres-
sion models and gradient boosting decision trees. The overall data has been
split into a training (75%) and test set (25%) with stratified sampling on
the target variable CS_time, to ensure representative samples in both sets.
The models have been evaluated with the test set using the root mean square
error (RMSE) as an overall quality measure.

The most successful approach has been the combination of a gradient boo-
sting tree model XGBoost (Chen, 2016) with the extended feature set. We fit
a linear regression model as a simple initial benchmark. From existing lite-
rature, there have been previous reports of successfully applying gradient
boosting trees on the problem domain of surgery duration prediction (see
Martinez, 2021 and Chu, 2022).

Table 1. Overview of different models and test results.

Model Feature Set RMSE

Linear Regression (Benchmark) wtag, ops und doc_class (i.e., 14.20
restricted features)

Linear Regression extended features 17.25

Linear Regression Multiple correspondence analysis 15.63
(MCA)- 4 components

XGBoost ops only 14.87

XGBoost restricted features 14.14

XGBoost extended features 11.52
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INTERPRETATION OF REGRESSION RESULTS

Within the table we see the results on both restricted (wtag, ops and
doc_class) as well as the “all features” extended feature set. In contrast to the
overall 52 variable set of the HIS, the extended feature set only contains infor-
mation on the sex, age of the patient, as well as further categorical diagnosis
data and information about in-patient (stationary) or out-patient treatment.

Our benchmark model consisted of a linear model containing a restricted
feature set of ops, doc_class and wtag. It provided quite satisfactory results,
which could only be improved by a XGBoost model for the same feature set.
However, the overall best performing model contained the extended feature
set. There, the XGBoost model performed best whereas the linear model per-
formed poorly with the extended setting. This might be indicating nonlinear
relationships within the extended feature set, that could not be captured by
the linear model. Since most features have been categorical, the linear model
might also have had more difficulties deriving the relevant interrelationships
than the XGBoost model.

DISTRIBUTIONS FOR CATEGORICAL FEATURE COMBINATIONS

While predictions of surgery durations already proved practical for obtaining
average surgery durations, considering the distribution of operation leng-
ths seemed relevant for further investigations. Distributions depending on
category-sets (i.e., type of operation “ops”, weekday “wtag” and surgeon
experience “doc_class”) have been analyzed. As can be seen in Figure 3, the
differences between CS_time distributions for different operation types can
be quite striking. Since we are dealing (for the restricted data set) only with
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Figure 3: Density plots for distributions of two chosen operation “ops” types on
CS_time.
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categorical data, we concluded that for each possible categorical combina-
tion, predictions of an arbitrary regression model will likely be equal (or at
least near) the mean of the distribution — since this will resemble a kind of
majority vote for the expected duration.

QUANTILE-BASED BIAS FOR BALANCING WAITING TIMES

For the quantile-based approach, the main idea is the following: if we look
at the distributions in Figure 3, and take the median as the prediction, the
prediction overestimates the surgery-duration in as many cases as it unde-
restimates it. If we systematically shorten the predicted duration (quantile
< 0.5), the planning will tend to undervalue the actual length. This results
in more cases for the patient needing to wait for ongoing OPs to be com-
pleted. On the other hand, if we overestimate the duration of the planned
surgery (quantile >0.5), this will lead to more cases that the physician needs
to wait for a planned patient not being ready yet, because the model will
overestimate.

Therefore, we have a way to systematically overestimate or underestimate
surgery durations by assuming higher or lower quantile predictions rather
than the median. This allows us to gradually control the probabilities of wai-
ting time being more on the part of the patient or more on the part of the
surgeon. This is a major advantage in contrast to just planning for one likely
operation duration.

Concluding, if our overall goal is to keep the utilization of the OR as
high as possible (while keeping patients’ waiting times to a tolerable level),
we can influence the bias gradually in favor of the surgeons and slightly
underestimate durations for planning.

CONSIDERATIONS ON SAMPLING SIZE

For the quantile-based bias, we need a distribution for each possible com-
bination of restricted categories used (ops, doc_class and wtag). For some
combinations there is a larger sample size than for less frequent combinations,
occurring only seldomly in the data. For our approach, we have used empiri-
cal quantiles rather than a fitted distribution function. Thus, the influencing
durations are invariably rooted in real-life samples.

COMPUTATIONAL SIMULATION

To test the effects of different prediction strategies on the actual planning
outcome, we set up a computational simulation of typical operation days
at the hospital. The routine simulates multiple days, weeks, and months of
planning data. The surgeries and their parameters are sampled according to
the empirical distributions in the historical data. These data are calculated
for multiple days. For the generation of simulated samples, again, empirical
sampling was chosen.

To constrain the complexity of the simulation, some assumptions were
made. For example, the number of operations to be performed per half-
day was set to a fixed number of five, OR changing times were assumed as
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constant and only one break time (lunch break) during the day has been con-
sidered. The simulation ran through a sampling period of 250 working days
to generate usable data in sufficient numbers and to allow for a comparison
between the different strategies.

SIMULATION RESULTS

Overall, Table 2 shows the results with respect to the different predi-
ctors and strategies. Average waiting time refers to the waiting time
for a single operation. Percentage of waiting times below three minutes
refers to the percentage share, considering all surgeries of the simulated
250 days.

The XGBoost model takes the prediction from the best performing regres-
sion model for its predicted surgery duration. We see that the overall sum
of waiting time of surgeons and patients is comparatively low. For the pro-
portion of surgeons and patients who wait less than three minutes, we see
a more balanced result than for the other predictors. Used in this way, the
model seems to try to reach an overall minimum of waiting time across both
patients and doctors.

The predictor of Quantile-Bias Qg 1 uses the distribution for the sampled
categorical feature combinations (ops, doc_class, wtag with corresponding
SC_time) as a basis. Here, the 0.1-Quantile is taken as the predictor - that
is a biased prediction in which physicians will have a 10% chance of having
to wait vs. a 90% chance of patients. We see that the weights have been
shifted to the advantage of doctors. Surgeons need to wait three minutes
or less in just under 80% of the cases. For patients, this number is roughly
27%. The average waiting time increases dramatically for the patients to over
33 minutes.

The mixed Mixed (XGB + Qq.o5) approach combines the XGBoost model
with the quantile bias Qg 5. To achieve the presented results, the Qg o5 quan-
tile (i.e., a very strong preference for the doctors) was used. The predictions
of both models are weighted equally. The distribution of waiting times for
physicians and patients can be seen in Figure 4. We see a more balanced
picture than with the pure quantile approach. We have a comparatively low
waiting time on the part of doctors and a high percentage of less than three
minutes of surgeon waiting time. At the same time, we have much better
values for patients, which can be regarded as a more balanced and desirable
overall result.

Table 2. Simulation results by different predictors.

Predictor Avg. wait Avg. wait Pct. Doctors Pct. Patients
time time waiting < 3 waiting < 3
Doctors Patients min min

XGBoost Model 7.90 min 21.74 min  63.12% 45.96%

Quantile-Bias Qq.1 3.88 min 3326 min  79.60% 27.40%

Mixed (XGB + Qq.05) 4.55 min 26.07min  71.44% 37.88%
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Figure 4: Waiting time distribution of the mixed (XGB + Qg 5) approach in minutes for
physicians (left) and patients (right).

DISCUSSION OF SIMULATION RESULTS

As the results have indicated, the quantile-based approach does offer a way
to influence waiting probabilities either in favor of patients or the medical
personnel and OR utilization. The mixture of the XGBoost model with
the quantile method has shown promise and we think that adjustments for
the planning process are very feasible using the approach. Additionally, the
quantile method itself is explanatory and can provide indicators about the
distribution of different operations that can be discussed and interpreted.
For each influencing decision, real life samples are the basis and can be
regarded. Explanatory factors will positively influence user’s acceptance and
trust in such a system (Shin, 2021), which is especially important for the
medical domain.

The simulation allows for facilitated testing of different strategies over
extended time periods. It enables a pre-selection of the quantile bias parame-
ters. This can help to determine practical considerations in advance. Lastly,
economical calculations might also be facilitated by extrapolating simulation
results.

However, there were also some limitations. The quantile method only
works well for sufficient sampling data (as is the cases with other models
as well). In the case of extraordinary events, the validity of the estimates may
be limited. Furthermore, OR change times or staff breaks were only consi-
dered rudimentarily in the simulation. These could possibly lead to effects
on buffering or amplifying waiting times during the day that were not yet
accounted for.

CONCLUSION OF THE APPROACH AND FURTHER WORK

In conclusion, we can say that tree-based regression models such as XGBo-
ost provide reliable results for structured categorical data and the prediction
of operation durations. However, we have seen during our research that it
is not only the best overall performing model, but the prediction that can
easily resemble and adjust to real-world requirements that is vital. With the
mixed quantile model, we have a way to tune trained models towards biasing
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patients’ or surgeons’ waiting time and tune them to the present efficiency
needs in a hospital setting. Moreover, the mixed bias approach adds these
considerations in an understandable and adjustable way and with reasonable
defaults. We hope that the approach that can contribute to a more considering
and balanced planning process in the future.

For further work, we see possible expansions of the simulation to include
more break times during the day. This would imply that waiting times would
not necessarily add up across multiple ORs and might provide a more reali-
stic picture of the day-to-day practice. However, this would also increase the
complexity and decrease portability of such a simulation. Another idea is to
use an additional ML model such as a Bayesian neural network (see Jospin,
2020) to predict confidence intervals and to make the approach even more
usable. Medical personnel would have a confidence estimation which would
allow for even more assertive planning.

ONGOING FIELD TESTS

Starting in October 2022, daily operation scheduling at the Vulpius hand
surgery operation center in Bad Rappenau has been supported with a trained
regression model. In the initial implementation step, the model consisted of
a trained XGBoost regressor to forecast the surgery durations CS_time. To
integrate with the existing planning process, forecast and scheduling were
combined in a manual planning step.

ADDITIONAL NATURAL LANGUAGE PROCESSING

Since the operation type “ops” variable used in the historical data analysis is
only available after the execution of an operation, an additional processing
step needed to be performed for the field tests. This step involved natural
language processing (NLP) of a manual operation description which can be
accessed a priori. This text is being preprocessed (e.g., put in lower case,
stop word removal, tokenization), then vectorized using the term frequency—
inverse document frequency (tf-idf). This vector is then used instead of the
“icd” (main diagnosis) and “ops” information which is only available at a
later stage.

FIELD TEST RESULTS

The field tests allowed to determine how scheduling based on the regression
model affects waiting time and the utilization of the surgery center. In the
validation period from October 2022 until January 2023, a reduction in ove-
rall waiting time could be detected: the median waiting time decreased by
31 minutes for stationary patients and by 24 minutes for outpatients. The
waiting time for the surgeons did not increase. The deviation between predi-
cted (patient to patient) surgery durations and the measured data has been
at RMSE of 12.35, which is in line with the best regression model results. It
showed that the additional NLP process step yielded the relevant information
towards operation type and main diagnosis. Even more, this shows that the
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model can generalize well enough to be applied to a real-world live setting
and showed no indications of overfitting.

A detailed error analysis revealed an accumulation of estimation outliers
for radius fractures. As a result, the text entries for this fracture type are being
improved to a stricter three-level scheme to include explicit keywords for
extraarticular, intraarticular and double plate surgeries. The resulting effects
on the error rate may be measured accurately at a later stage of the evaluation.

The new scheduling approach was perceived very positively by employees
and medical staff. Subjectively, they noticed an improved forecast, less delays
and appreciate daily use the prediction model.
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