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ABSTRACT

A major focus in computer vision research is the recognition of human activity based
on visual information from audiovisual data using artificial intelligence. In this con-
text, researchers are currently investigating image-based approaches using 3D CNNs,
RNNSs, or hybrid models with the goal of learning multiple levels of representation and
abstraction that enable fully automated feature extraction and activity analysis based
on them. Unfortunately, these architectures require powerful hardware to achieve the
highest possible real-time processing, which makes them difficult to deploy on smart-
phones. However, many video captures are increasingly made with smartphones, so
immediate classification of the human activities performed and their labeling already
during the video capture would be useful for a variety of use cases. However, this
requires an efficient system architecture to perform real-time analysis despite limited
hardware power. This contribution addresses the approach of skeleton-based activity
recognition on smartphones, where the motion vectors of the detected skeleton points
are analyzed for their spatial and temporal expression. In this approach, the 3D bone
points of a detected person are extracted using an AR framework and their motion data
is analyzed in real time using a self-trained RNN. This purely numerical approach ena-
bles time-efficient real-time processing and activity classification. This system makes
it possible to recognize a person in a live video stream recorded with a smartphone
and classify the activity performed. By successfully deploying the system in several
field tests, it can be shown that the described approach both works in principle and
can be transferred to a resource-constrained mobile environment.

Keywords: Artificial intelligence, Computer vision, RNN, Pose estimation, Human activity
analysis

INTRODUCTION

Human activity recognition in videos has been an important topic in com-
puter vision for several decades. The literature reports numerous works on
human motion analysis in multimodal data. Human activity detection can be
realized with data types in the form of color data (RGB), color and depth

data (RGBD), and human body models (Weinland et al. 2011; Ullah 2018).
A subdivision of approaches to human activity recognition within this data
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is made into traditional manually created features combined with machine
learning and holistic deep learning algorithms (Zhang et al. 2019). Although
good success has been achieved using traditionally generated features, these
hand-generated features require a great deal of human effort and expertise to
develop effective feature extraction procedures. Furthermore, recent research
studies have shown that traditional methods based on manual features are
not suitable for all types of datasets (Al-Faris et al. 2020). Considering this,
the deep learning approach, also known as hierarchical learning or deep stru-
ctured learning, which is based on the concept of Artificial Neural Networks
(ANNS), is becoming increasingly popular for human activity recognition.
Corresponding models have already been successfully applied in the fields
of speech recognition, audio recognition or image processing, where their
performance is either superior or comparable to other algorithms. Deep Lear-
ning methods allow the automatic processing of raw image and video data
for feature extraction, description and classification.

Compared to feature-based approaches, these methods prove to be more
powerful and generalizable, but often require data-intensive training to build
the models, as they aim to learn multiple representation and abstraction
levels that allow a fully automated feature extraction process (Beddiar et al.
2020). With respect to the different source data, Deep Learning methods are
divided into (i) image-based and (ii) skeleton-based approaches for activity
recognition (Fu et al. 2019). Image-based methods use the original available
frames or depth images of the raw video data. Skeleton-based approaches,
on the other hand, use the skeletal information used to encode the tra-
jectories of human body joints previously obtained from pose extraction.
Commonly used network architectures for activity recognition are Deep
Neural Networks (DNN), Convolution Neural Networks (CNN), Recurrent
Neural Networks (RNN), and Hybrid Models (Fu et al. 2019; Khan and
Ghani 2021; Koohzadi and Charkari 2017).

RELATED WORK

Early methods for activity classification based on DNNs are presented based
on previously extracted features from multimodal wearable sensors (Vepa-
komma et al. 2015). Other researchers (Walse et al. 2016) are similarly using
Principal Component Analysis (PCA), a statistical technique that allows the
information content of large datasets to be mapped using a smaller set of
summary indices, for feature selection from mobile sensor data and a DNN
for activity learning.

Krizhevsky et al. trained CNNs for the first time on a sufficiently large
image dataset (ImageNet) consisting of over 15 million labeled images (Kri-
zhevsky et al. 2012). The impressive results have initiated a new era for the
use of CNNs in activity recognition. Initial research on the use of Convo-
lutional Neural Networks (CNN) for activity recognition based on a single
image architecture using a 2D-CNN (2D-ConvNet) was conducted by Karpa-
thy et al. (Karpathy et al. 2014). However, for capturing temporal dynamics
within a short period of time, the use of a 3D convolution that considers
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multiple consecutive frames is more intuitive for direct hierarchical represen-
tation of spatiotemporal data. The 3D convolution is achieved by transferring
a kernel to a cube and moving it in three directions over a stack of several
consecutive images. The resulting output is a 3-dimensional volume space.
An approach to activity recognition using such 3D CNNs was introduced by
Ji et al. (Ji et al. 2013). Researchers finally present a network architecture
consisting of eight convolutional layers, five pooling layers, and two fully
connected layers (Tran et al. 2015). While spatial and temporal observation
in 3D CNN:s is performed within one network, multiple stream networks take
the approach of processing different input streams through separate networks
and then merging the individual results (Simonyan and Zisserman 2014). For
different input streams, for example, RGB data, stacked optical flow data,
extracted trajectories, spectograms of audio signals or depth information are
used. For different input streams, for example, RGB data, stacked optical
flow data, extracted trajectories, spectograms of audio signals or depth infor-
mation are used (Kong and Fu 2018; Girdhar et al. 2017). In addition to
CNNs, Recurrent Neural Networks (RNNs) represent another network arch-
itecture that has been used. RNNs are primarily designed to perform tasks
that require a temporal component for sequential information processing,
which makes them a good option for activity recognition. However, because
RNNs suffer from the vanishing gradient problem, which causes layers to
consequently stop learning, they can only be used for short memory tasks
(Mueller and Massaron 2020). Long Short-Term Memory (LSTM) networks
attempt to counter this problem by introducing a distinction between short-
and long-term states in the RNN architecture, allowing for deeper tempo-
ral resolution of sequences (Hochreiter and Schmidhuber 1997; Zhang et al.
2017).

Consequently, LSTM networks represent the most popular RNN archite-
cture for capturing long-term temporal dynamics in the context of activity
recognition (Zhang et al. 2017). Thus, in activity recognition using recorded
sensor data, an LSTM has been used to capture performed motion informa-
tion and its dependencies (Murad and Pyun 2017; Zebin et al. 2018). LSTMs
can thus also be used in the context of skeleton-based activity analysis by con-
sidering the spatial and temporal motion information of human bone points
as features (Du et al. 2015; Liu et al. 2018; Song et al. 2018). This requires
the prior extraction of skeletal data, which is mainly performed using RGBD
data. LSTMs are also used in the context of image-based analysis. For exam-
ple, visual content based on BoW as well as SIFT features has been used to
classify activities in soccer sequences (Baccouche et al. 2010). The increasing
popularity of neural networks for pose extraction (e.g., (Cao et al. 2019;
Wang et al. 2019)) now enables skeleton extraction based on RGB data and
thus can be used as a basis for activity analysis using LSTM (Ramirez et al.
2022).

SYSTEM ARCHITECTURE AND WORKFLOW

The skeleton-based activity analysis makes it possible to automatically
detect and classify movement patterns of persons. One of the challenges of
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skeleton-based activity analysis using smartphones is the extraction of joint
points from an image. This requires the use of deep neural networks capable
of recognizing human poses and bone points in real time. The current iPhone
14 Pro smartphone enables extraction of human joint points in live video
images at up to 60 fps. Joint coordinates can be processed in either 2D or 3D
coordinates. While the 2D-based activity analysis provides the coordinates in
x- and y-direction, the 3D-based activity analysis additionally provides the
depth information. As the bone points are provided as numerical coordinate
points, direct and time-efficient processing using LSTM is possible to find
cross-correlations of the body keypoints over a variable time frame. Figure 1
shows the workflows for creating the necessary training data set and the
classification of activities.
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Figure 1: (A) Workflow for creating a training dataset. (B) Workflow for classifying
activities in live camera images.

Pose Extraction

Apple’s current framework ARKit (ARKit | Apple Developer Documenta-
tion n.d.) now enables the extraction of 3D keypoints, which can lead to an
increase in detection performance due to the additional third dimension. For
further processing, the joint coordinates must be provided relative to a cen-
tral zero point of the person. This makes the data independent of the person’s
positioning in the camera image. A total of 18 keypoints are extracted, which
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are processed by an LSTM-based activity classifier based on the normalized
bone points.

Dataset Generation for Activity Classifier Training

The underlying system architecture is the activity classifier unit presented
in the workflow of Thomanek et al. (Thomanek et al. 2020). The activity
classifier unit enables the generation of a classification model. The dataset
needed for training is generated by ourselves using iPhone 14 Pro. This ena-
bles the recording of normalized and transformed 3D body points, which
are subsequently used for the training of an LSTM-based activity classifier.
The training data is composed of the ten activities shown in Table 1, where
multiple activity sequences are recorded for each activity. An activity seque-
nce corresponds to a time-limited record of a motion pattern of a performed
activity. An activity sequence of length 3s results in 1620 data points at a
recording rate of 30 fps and 18 extracted keypoints. We recorded 50 activity
sequences for each activity. Consequently, this results in 81,000 data points
to represent one activity. Each data point contains the three coordinates for
the x-, y- and z-direction.

Table 1. Everyday activities used for training.

Activity identifier Description: A Person...

BendOver ... leans forward to pick up something, for example
CallingPhoneWithLeft ... makes a phone call with the left hand
CallingPhoneWithRight ... makes a phone call with the right hand
EatWithRight ... eats or drinks with the right hand
HoldingBox ... carries a larger object with both hands
Nothing ... stands with hands hanging down
SittingDown ... sits down on a chair

TextingPhone ... using a smartphone with both hands
WaveLeft ... waves with the left arm

WaveRight ... waves with the right arm

Training the Activity Classifier

The training data is exported by the app in JSON format shown in
Figure 1 (A). For training the activity classifier, we use the CreatML framew-
ork provided by Apple (Create ML | Apple Developer Documentation n.d.).
This allows the creation of a DeepConvLSTM model (Ordofiez and Rog-
gen 2016) based on recurrent convolutional and LSTM units, allowing the
processing as well as fusion of multimodal numerical data points to model
temporal dynamics. For training, we used all 18 body points.

Activity Recognition

The real-time activity analysis on the smartphone is analog to the creation
of the training data required for the training, shown in Figure 1 (B). The
extracted body keypoints are taken from the live image of the integrated
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camera and processed directly on the device. This includes the transforma-
tion and normalization of the extracted body keypoints. Every Input Vektor
of keypoints include previous time-steps as additional part of model input.
For example, an input window of size 30 include the current time-step along
with 29 previous sets of keypoints.

According to the specifications of the trained DeepConvLSTM model
(window size), the motion of each body keypoint is collected in a separate
array over the runtime corresponding to the window size. We use the same
recording rate of 30 fps to extract the 18 body keypoints and pass them to
the classifier. If the number of keypoints defined by the window size has been
sampled over the runtime for each of the 18 body keypoints, all data points
are passed to the activity classifier for activity prediction. Body keypoints
that cannot be extracted by pose detection for example due to occlusions
are estimated as far as possible. If no keypoints can be extracted, the input
vector for each keypoint is reset to provide correct data collection when key-
points become available again. On successful transfer of the data points to
the activity classifier, the activity classifier returns the class label with the
highest probability value and a dictionary with several class labels and their
probability value.

DISCUSSION

The activity data recorded for training were at a length of 3s per activity sequ-
ence and a frame rate of 30 fps. We selected the following 10 daily activities
shown in Table 1 and used them for training.

For training the activity classifier, we experimented with different iterati-
ons and window sizes. Iterations were performed at values of 10, 50, 70, 140,
300, and 600. For the window sizes, we used the values 15, 30, 45, and 60,
resulting in 24 trained models with different precision and recall values for
the mentioned activities.

The results of the experiments are shown in Figure 2 and Figure 3. The
results show that the classification works very well for some activities depen-
ding on the combination of iteration and window size (e.g. “BendOver”,
“SittingDown” with many Precision and Recall values of 1), while it is less
successful for other activities (e.g. “CallingPhoneWithLeft” with Precision
and Recall of 0).

It indicates that using more iterations and a larger window size can
improve total classification performance. For example, using 50 iterations
and a window size of 15 results in lower performance compared to using 70
iterations with a window size of 45. However, there are also exceptions to
this rule, such as the classification of “WaveLeft”, which often deteriorates
with more iterations. In general, it can be stated that a too high iteration
value of 600 again leads to a worse total performance due to overfitting on
training data.

As can be seen in Figure 3, we were able to achieve best results at an itera-
tion of 300 and a window size of 60, which means that at 30 fps two seconds
of an activity sequence are used for analysis.
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Figure 3: and window

size.

Average of precision and recall divided by class vs. iteration

The generated model has a size of 1.8 MB and can be used directly in the
source code of the iOS app. The individual body points are passed to the
classification model. The size of the array corresponds to the Window Size.
To establish independence, the body proportions are normalized.

From the age of six, body proportions differ only slightly from each other
(Schiinke et al. 2018). The skeleton-based activity analysis can thus be used
for children and adults similarly, without the need to use special anthropome-
tric training data to create the models. Since the data is normalized relative
to body proportions, the app allows classification independent of body size.
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Figure 4 shows the confusion matrix for the model trained with 300 ite-
rations and a window size of 60. Here it becomes obvious that especially the
activities CallingPhoneWithRight, HoldingBox, Nothing and TextingPhone
show deficits in the classification. This could be due to the similarity of the
skeletal movements (e.g. TextingPhone and Holdingbox).
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Figure 4: Confusion matrix for the detection of the ten activities listed in Table 1 using
our own dataset.

CONCLUSION

The presented method enables real-time based activity detection in live video
images using a smartphone at a frame rate of 30 fps. Due to the resulting
quotient of window size and frame rate (window_size/fps) of, for example,
60 and 30 fps, there is a time offset of 2s to ensure the required data buffe-
ring before forwarding to the activity classifier. The results obtained in the
experiments could be confirmed in a field test with test persons in the age
range of 13 - 45.

Overall, it can be said that the classification performance is good for most
activities, but there is still room for improvement, especially for the activities
with low Precision and Recall values. One possible method to improve the
classification performance here could be to limit the number of body points
used to the most necessary ones. Currently, we use all 18 body points for
classification. Considering upper body and lower body activities separately
could potentially increase classification performance.

Many activities are similar in terms of their skeletal movements. Eventu-
ally involved objects can provide additional contextual information for the
performed activity here (e.g. TextingPhone: person holding smartphone vs.
ReadingBookperson reading a book). The additional use of an object clas-
sifier and the associated inclusion of the involved objects as features of the
activity classifier could potentially increase recognition performance.
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