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ABSTRACT

Automatic deformation of cranial models has a significant effect on the ergonomic
design of headgears. Previously, manual customization of the template model was
required before it could be used for further qualitative analysis of CT-derived cranial
models. With the development of automatic deformation methods, cranial modeling
can now be conducted efficiently. Furthermore, deformation methods with anatomical
landmarks can improve the model accuracy and speedup the procedure. This study
compares three different landmark-guided deformation methods, including LGCPD,
NDP, and S-ARAP. These three methods treat the automatic deformation problem as
a task of probability density estimation, hierarchical deformation decomposition, and
local rigidity preservation, respectively. The study provides anatomical definitions of
the cranial landmarks required for automatic deformation. Finally, the study discusses
and compares the suitability of these three deformation methods for automatic cranial
modeling.
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INTRODUCTION

Wearable headgears are designed to minimize the impacts to protect people
from driving accidents, sport injuries, etc. An accurate modeling of cranial
structure is crucial for designing a suitable headgear that can both fit the
human head and effectively reduce the impacts. More and more modeling
methods (Du et al., 2013, Danckaers et al., 2017, and Shui et al., 2020) are
proposed to construct parametric models (Li et al., 2017) for further headgear
customization or impact simulation. After collecting 3D data from Compu-
ted Tomography (CT) scan of human cranial, such a parametric model is
built from the matching between the template model and the 3D mesh of
human cranial, which is named 3D registration. Most of the modeling meth-
ods first apply rigid registration according to the pre-defined feature points to
obtain an initial transformed template model. Then, non-rigid registration,
i.e., 3D deformation, is adopted to obtain a fine registration between tem-
plate model and individual cranial mesh. However, due to the high complex
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Figure 1: Illustration of cranial deformation on the template to fit a target mesh.

geometry of human cranial, it is challenged for some deformation methods
to handle the cranial modeling. Moreover, ill-defined feature points also lead
to inaccurate matching correspondences. The deformed template model the-
refore has a large gap with the shape of individual cranial mesh. Hence,
anatomical landmarks and suitable deformation methods are both vital for
a fine-grained cranial modeling. This study investigates the performance of
three different deformation methods on cranial models, given a anatomically
defined landmark set.

DEFORMATION METHODS

The automatic cranial deformation is facing two major challenges. Firstly,
the geometry of cranial meshes reconstructed from CT scans is complex with
plenty of small fragments, which may introduce noises to the deformation
procedure. Second, the huge number of vertices of cranial meshes, especially
the skull part, will significantly increase the deformation runtime and raise
the requirement of large memory occupation. In this study, we introduce three
landmark-guided deformation methods for cranial modeling to against the
above difficulties.

LANDMARK-GUIDED COHERENT POINT DRIFT (LGCPD)

LGCPD (Hu et al., 2010) is a combination of vanilla Coherent Point Drift
(CPD) (Myronenko et al., 2010) and anatomical landmarks. Vanilla CPD
is a probabilistic method that treat the alignment of two models as a pro-
bability density estimation problem based on a Gaussian Mixture Model
(GMM) (Reynolds, 2009). And it additionally introduces a regularization
term on the displacement field for non-rigid case. Based on the vanilla CPD
strategy, LGCPD additionally takes the paired corresponding source and
target landmarks as inputs, which are useful for orienting the source and
target more accurate than CPD. The utilization of landmarks highlights the
potential advantage of combining deformation methods with anatomical lan-
dmarks for cranial modeling. However, LGCPD is computationally intensive,
which means once the cranial model has many vertices, the computation
consumes a large memory and runs slowly. Additionally, since LGCPD is a
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probability-based solution, it is sensitive to obtaining a suboptimal solution
and results in a deformed model with high shape variation.

NEURAL DEFORMATION PYRAMID (NDP)

To relief the high complexity problem in current non-rigid registration, NDP
(Li et al., 2022) treats the automatic deformation problem as a task of
hierarchical deformation decomposition. Specifically, NDP uses a pyramid
architecture implemented by Multi-Layer Perceptron (MLP) (Haykin, 1998)
to imitate the non-rigid deformation procedure. For each pyramid level, the
encoded 3D points from template model will be taken as input and the defor-
mation increments of the points from the previous level will be predicted.
With this hierarchical decomposition mechanism, NDP can achieve advanced
partial-to-partial non-rigid registration results by minimizing the Euclidean
error between the incrementally deformed vertices and the target vertices.
NDP simplifies the deformation problem by decomposing it into several
sub-deformations. With the benefit of MLP, NDP can perform the defor-
mation faster than CPD-based methods. Moreover, since MLP is available
for taking input point sets in arbitrary shapes, it is straightforward for NDP
to take anatomical landmark pairs as additional supervision and improve
the deformation accuracy. However, without the constraint of local rigidity,
partial-to-partial deformation accumulates minor deformation errors from
each sub-step, leading to unsatisfactory deformation results in some cases.

AS-RIGID-AS-POSSIBLE IN SCULPTOR (S-ARAP)

The registration part in SCULPTOR (S-ARAP) (Qiu et al., 2022) introduces
a novel energy term to preserve the local rigidity so as to achieve high qua-
lity in cranial deformation. S-ARAP uniformly samples control nodes and
computes their influence weights on the source model’s vertices using Radial
Basis Function (RBF) (Rhee et al., 2007). The larger the distance between the
node and the vertices, the higher the weight with a stronger influence. The
As-Rigid-As-Possible (ARAP) (Huang et al., 2021) term is then introduced to
preserve the local rigidity of the deformedmodel with the calculated influence
weights for the local regions. Along with ARAP term, S-ARAP also introdu-
ces the Euclidean distance error between the deformed vertices and the target
vertices, as well as the error between landmark pairs for optimization. As
a result, S-ARAP can automatically deform the cranial model, particularly
the skull part with complex geometries, to achieve a well-structured model.
Moreover, the proposed control node sampling strategy speeds up the exe-
cution of deformation while using less memory than LGCPD. Instead of the
decomposition in NDP, S-ARAP increases the number of control nodes in
several stages to perform hierarchical deformation.

DATA ACQUISITION AND VALIDATION CRITERIA

To obtain the individual cranial mesh, we use Materialise Mimics software to
process a set of 2D CT images. We then construct the templates of skull and
mandible (see Figure 1) using Autodesk Maya. Furthermore, we define 51
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Figure 2: PTPD visualization of different deformation methods for skull and mandible.

anatomical landmarks for the skull and 14 for the mandible (Bermejo et al.,
2021).

For quantitative comparisons, we introduce the following two metrics,
i.e., Chamfer-Distance (CD) (Fan et al., 2017) and Point-to-Plane Distance
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(PTPD) (Low, 2004). CD determines the distance between deformed vertices
and the nearest vertices on the target model and vice versa. For each point in
each point set, CD searches the nearest point in the other point set and sums
the square of distance up. Different from CD, PTPD calculates the distance
between the deformed vertices and the nearest plane on the target model to
calculate the shape error. The maximum value in PTPD, denoted as PTPDmax,
can help identify outliers in deformed results. Lower CD and PTPD values
suggest a better matching with the target. These two metrics can measure the
pointwise and shape error of the deformation results, respectively.

DISCUSSION

In this section, we compare the performance of the above three anatomi-
cal landmark-guided deformation methods on cranial modeling with both
quantitative and qualitative experimental results. In Tables 1 and 2, S-ARAP
outperforms LGCPD and NDP in terms of CD and PTPD on both skull and
mandible. In particular, for skulls with complex geometry and a mass of fra-
gments, the deformation results of LGCPD and NDP have higher CD and
PTPDmax values, indicating that these two methods are more susceptible to
failure by noises, while S-ARAP is more robust. Besides, although NDP has
the lowest runtime on the skull and mandible, the runtime of S-ARAP is
not significantly affected by the increased number of vertices compared to
LGCPD. The relatively stable runtime of S-ARAP is achieved by the proposed
control node mechanism.

Furthermore, the deformed skulls and mandibles by different deformation
methods are visualized with a heatmap revealing the large deformation error.
As shown in Figure 2, the color from blue to red indicates the PTPD error is
from small to large. The deformations from LGCPD are always affected by
the outliers, e.g., the inner layer of skull and the bottom part of mandible.
Meanwhile, the deformed meshes from NDP are coarse, because NDP tends
to transform the point set of template model in a free way without the local

Table 1. Quantitative comparisons of different deformation methods on skull. ↓ indi-
cates the lower the metric value, the better the performance of the method.

Method CD (mm) ↓ PTPD (mm) ↓ PTPDmax (mm) ↓ Runtime (min) ↓

LGCPD 62.62 2.31 25.04 17.3
NDP 59.40 2.23 29.19 1.0
S-ARAP 22.04 1.46 12.22 5.0

Table 2. Quantitative comparisons of different deformation methods on mandible. ↓

indicates the lower the metric value, the better the performance of the method.

Method CD (mm) ↓ PTPD (mm) ↓ PTPDmax (mm) ↓ Runtime (min) ↓

LGCPD 2.29 0.24 9.40 1.4
NDP 3.59 0.52 3.89 0.3
S-ARAP 1.96 0.26 2.08 1.5
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rigidity constraint. S-ARAP shows the lowest fitting error on smoother defor-
med results compared to LGCPD and NDP. Therefore, S-ARAP is a suitable
method for automatic deformation on cranial modeling with the guidance of
anatomical landmarks.

CONCLUSION

For fine-grained cranial modeling, it is efficient to combine anatomical lan-
dmarks with adequate 3D deformation methods. In this study, we introduce
the well-defined anatomical landmarks as well as three deformation meth-
ods, including probability-based method (LGCPD), hierarchical deformation
method (NDP), and local rigidity preserving method (S-ARAP). We demon-
strate the robustness of S-ARAP on both skull and mandible deformation.
Furthermore, we illustrate two qualified criteria, CD and PTPD, to validate
the performance of deformation, providing a straightforward evaluation for
headgear design.
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