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ABSTRACT

A variety of systems exist for managing human-machine team throughput and effe-
ctiveness. One example is autonomous managers (AMs), software that dynamically
reallocates tasks to individual members of a team based on their workload and perfor-
mance. Cognitive models can inform these technologies by projecting performance
into the future and enabling “what-if” analyses. For example, would removing a
task from an individual whose current performance is low cause them to improve?
Conversely, can a team member who is currently performing well handle even more
work without dropping performance? In the present study, we develop and validate a
cognitive model built in the Adaptive Control of Thought – Rational (ACT-R) cognitive
architecture in a novel empirical paradigm: The Intelligence, Surveillance, and Recon-
naissance Multi-attribute Task Battery (ISR-MATB). In this task, participants engage in
a analog ISR task in which they must integrate information from several subtasks to
arrive at a decision about a situation. These tasks include searching visual displays,
listening for audio chatter, making decisions based on multiple cues, and remaining
vigilant for signals. The tasks are based upon analogous laboratory psychology tasks
to improve empirical rigor. Eight participants completed the task under two 30-minute
conditions: easy and difficult. The difficult task required searching more complex sti-
muli in the audio and visual domain than in the easy condition. In addition, subjective
workload ratings (NASA-TLX) were collected. We describe the preliminary behavioral
and self-report results, as well as the ACT-R model’s fit to the behavioral data. Further,
we describe a new method for workload visualization and task decomposition using
model-based analyses.
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INTRODUCTION

Autonomous vehicles and technology are becoming increasingly common in
commercial, civilian, and military applications. This creates challenges for
human operators as they interact with these systems and maintain situation
awareness of their operations (Endsley & Kiris, 1995). Moreover, massive
amounts of data can be quickly and autonomously processed and presen-
ted for human operators, who must in turn make decisions using that data.
As these applications are further developed, it is important to bear in mind
the strengths and limitations of human operators and present information in
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ways that does not overwhelm their moment-to-moment cognitive capacities.
In this paper, we discuss the integration of two technologies that help to
address these concerns: autonomous managers and cognitive models.

Autonomous managers (AMs) are algorithms that monitor the performa-
nce of teams of agents (both human and artificial) and make real time, online
tasking recommendations to maximize team performance. In principle, these
systems can make these recommendations based on any data that is both rele-
vant and measurable in real-time. For example, if the performance of agents
can be measured in real-time, then an AM could monitor the task performa-
nce of all the agents in a team. If an agent’s performance on a task drops,
then the AM could recommend reassigning that task to another agent (Fisher
et al., 2022).

Performance data are not always available during online operation. How-
ever, this limitation can be overcome using metrics that are correlated with
performance or by using models to predict performance. One promising and
widely studied metric is workload. Workload can be measured via performa-
nce, subjective report (Roscoe & Eillis, 1990; Hart & Staveland, 1988), or
by physiological metrics such as EEG, eye movements, and heart rate (Mat-
thews et al., 2015; Christensen et al., 2020). The correspondence between
workload and performance is complex and subject to variability (Hancock
& Matthews, 2019), but it is nevertheless potentially informative in a vari-
ety of contexts, especially in cases where individuals approach a degree of
workload beyond which performance drops below an acceptable level (Grier
et al., 2008).

A complementary technique that has recently shown promise for proje-
cting workload and performance into the future is cognitive modeling. A
cognitive model is a computational or mathematical model that represents
cognition and behavior. A commonly used framework for building these
models is Adaptive Control of Thought – Rational (ACT-R; Anderson, 2007).
ACT-R is a cognitive architecture – a modeling framework based upon a com-
prehensive theory of cognition in which agents can be developed to complete
specific tasks. It assumes that cognition emerges from the interaction of disti-
nct modules each responsible for a specific function (e.g., memory, vision,
motor control, etc.). As such, it is situated at a level of analysis that allows it to
make meaningful and valid predictions about moment-to-moment cognitive
demands.

Jo et al., (2012) demonstrated that ACT-R can predict both the performa-
nce and subjective workload of subjects performing a suite of laboratory tasks
which recruit different combinations of cognitive capacities. Specifically, a
weighted sum of activity across the various modules predicts subjective wor-
kload scores as measured by the NASA-TLX. Stevens et al. (2022) showed
that a similar analysis has convergent validity with physiological workload
signals.

In the current paper, we report preliminary empirical and modeling results
aimed at applying AM and cognitive modeling technology to a context that
represents an analytical workflow in which an operator must monitor mul-
tiple channels and make decisions based on ambiguous information. This
workflow is represented by a laboratory task we have developed that we call
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the Intelligence, Surveillance and ReconnaissanceMultiattribute Task Battery
(ISR-MATB). In a previous paper, we demonstrated that our proposed inte-
gration between AMs and cognitive models has the potential to improve team
performance in the novel task environment (Fisher et al., 2022).

OVERVIEW

Our work in this paper will be structured as follows. First, we will describe
our novel task environment and experiment. Then, wewill describe the cogni-
tive model we have developed to explain the empirical data. Then we will
discuss ways in which the model can make workload predictions that will be
useful to an AM.

ISR-MATB

TheMulti-Attribute Task Battery (MATB; Santiago et al., 2011) is commonly
used to study workload experienced by pilots while operating aircraft. The
ISR-MATB is a modification of the MATB that reflects demands in ISR envi-
ronments. One feature that distinguishes the ISR-MATB from the original
MATB is the inter-dependence between subtasks. In ISR, analysts must obtain
intelligence from disparate and multi-modal sources, and integrate it into
an actionable decision. Difficulty of subtasks can be configured to achieve
a desired level of workload. In the present work we varied difficulty levels
in the VST and AST and describe those manipulations in their respective
sections.

Psychomotor Vigilance Task (PVT)

During discovery, mission requirements may be updated based on new
intelligence or emerging requirements, so vigilance and adaptability toward
changing goals is critical. We capture this component of ISR operations with
a modified version of the Psychomotor Vigilance Task (PVT; Dinges, 1985).
In the PVT, participants respond as quickly as possible to a stimulus presen-
ted after a random interval (2-10 seconds). Our modified version of the PVT
differed in two regards: (1) the random interval was 0–10 seconds, and (2)
on each trial, the stimulus was one of four randomly selected letters with
different colors (e.g., black Q), which serves as a target in the VST and AST
subtasks.

Visual Search Task (VST)

Visual information, including geospatial intelligence and mobile threat intel-
ligence, are searched by ISR operators for pertinent targets or threats. In the
ISR-MATB, we emulate these demands using a conjunctive VST (Treisman,
1980). Participants search for a target from the PVT among an array of scat-
tered distractors, which vary by color and letter. A stimulus is considered a
target if it matches on both dimensions (e.g., black Q). On half of the tri-
als the target is present and on the other half of trials the target is absent.
Difficulty on the task is manipulated by varying set size and discriminability
(Palmer, 1995).
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Auditory Search Task (AST)

ISR operations require multimodal intelligence analysis, including searching
for targets based on radio communications or audio recordings, which may
vary in terms of signal quality. In the ISR-MATB,we emulate these conditions
with an audio search sub-task in which a participant scans multiple radio
channels with background noise for the search target (e.g., an audio recording
of the words “black Q”). The difficulty of this task can be manipulated by
changing the number of radio channels and the volume of background noise.

Decision Task (DT)

Following detection of either the presence or absence of the target in the AST
and VST, the ISR-MATB contains a multiple-cue DT inspired by similar tasks
in the literature (e.g., Sieck and Yates, 2001). Decisions are based on two cues:
(1) whether the target state (present or absent) is the same or different betw-
een the VST and AST subtasks, and (2) whether confidence in the accuracy
of the information is low or high, based on a revealed cue. The decision rule
requires all three cues to perform better than chance.

ACT-R Architecture

We developed a model of the ISR-MATB based on the Adaptive Con-
trol of Thought-Rational (ACT-R) cognitive architecture (Anderson, et al.,
2004). A diagram of ACT-R’s architecture is illustrated in Figure 1. ACT-R’s
architecture is composed of specialized information processing modules for
functions such as memory, action, and perception. Each module is conne-
cted to a capacity-limited buffer which can process only a single request
from the procedural module at a time and return and hold a single chunk
of information per request. The resulting information processing bottleneck
is responsible, in part, for producing realistic human-like errors and response
times.

ACT-R operates as a production system in which cognition unfolds over
a series of selection-action cycles called a production cycle. In a production
cycle, a production-rule (i.e., an IF-THEN statement) is selected based on its
match to the state of the architecture, and then its actions are executed. A
production rule is the basic unit of procedural knowledge consisting of two
components: a set of conditions, and a set of actions that are executed when
the conditions are satisfied. For example, a production rule for the VSTmight

Figure 1: An illustration of the ACT-R cognitive architecture.
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specify in natural language, “If the visual object in the visual buffer matches
the target, then respond present.”

ISR-MATB Model

A diagram of the model’s strategy can be found in Figure 2. The model
completes the subtasks in a clockwise fashion: PVT, VST, AST, and the DT.
The model begins by waiting for the target to appear during the PVT. Once
the target appears, the model automatically orients to it, encodes the tar-
get, and responds. Next, the model performs the VST using the Pre-attentive
Attentive Vision (PAAV) extension of ACT-R’s visual system (Nyamsuren &
Taatgen, 2013) to provide more realistic search behavior. In PAAV, obje-
cts have less acuity based on distance from the point of visual fixation.
The model fixates on the visual object with the highest visual activation
value (a combination of bottom-up and top-down influences) exceeding a
dynamic termination threshold (Moran et al., 2013). If no object’s acti-
vation exceeds the threshold, the model responds “absent”. If the model
finds the target, it responds “present”. Otherwise, it attempts to find a new
visual stimulus. After attending to a distractor, the dynamic threshold incre-
ases, which increases the probability of responding “absent” on the next
visual fixation.

Next the model scans through the radio channels in the AST. If the message
matches the target value, the model responds “present”. Otherwise, it attem-
pts to find and listen to a new channel. If the model runs out of channels
to inspect, it will respond “absent”. Finally, in the DT, the model attempts
to retrieve a decision rule matching the responses from the VST, AST and
confidence cue. If a rule cannot be retrieved from memory, the model guesses
randomly.

Figure 2: A flow chart of the strategy used in the ISR-MATB model. vm is the visual
object with the highest activation; ρ is the visual termination threshold; am is the chunk
with the highest memory activation; τ is the retrieval threshold. Nodes are color-coded
according to subtask. Pink: PVT, green: VST, purple: AST, blue: DT.
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METHOD

Data for this experiment was collected at the University of Dayton Research
Institute (UDRI). All data was collected in compliance with the Air Force
Research Laboratory’s Institutional Review Board standards and protocols.
This is an ongoing study, and we present the first 8 subjects of collected
data (N = 8). Behavioral data was collected using a task developed in the
Unity game engine Prior to full data collection, participants were given a
5-minute practice trial to work with the ISR-MATB and become familiar
with the interface and making appropriate responses for each of the inter-
dependent tasks. Task difficulty was manipulated within-subjects to induce
varying levels of workload. There were two conditions of task difficulty (easy
and difficult) that were presented to each participant, where the order of the
tasks counterbalanced between subjects. Each condition lasted for 30 minu-
tes. Participants made behavioral response inputs using a standard computer
keyboard.

RESULTS

A 4×2 within-subjects ANOVAwas conducted with subtask (PVT,VST,AST,
and DMT) and difficulty condition (easy, hard) as factors on both accuracy
and response times. Greenhouse-Geisser corrections were applied when viola-
tions of sphericity were significant. Overall, we observed an effect of subtask
on accuracy (F(1.28, 8.97) = 6.745, p = .024 ηp

2
= .491). There were no

significant effects of difficulty condition on accuracy and no interactions. For
response times we observed statistically significant effects of subtask (F(1.26,
8.82) = 459, p < .0001; ηp

2
= .98), difficulty condition (F(1, 7) = 18.8,

p = .003, ηp
2 = .728), and an interaction between difficulty condition and

subtask (F(1.45, 10.18) = 9.411, p = .007, ηp2 = .573).
Overall, the results suggest participant performance varies reliably on each

of the four subtasks in terms of accuracy and response. But the workload
manipulation appears to affect only the response times. Moreover, the mani-
pulation does not appear to have an effect on PVT response times. This makes
sense because the PVT portion of the task is identical in the two conditions.

A global response to the NASA-TLX was computed for each participant.
There was a very slight numerical trend such that participants reported higher
global workload in the hard condition (M = 59.0, SD = 12.3) than in the
easy condition (M = 60.1, SD = 16.1). But this trend did not approach
significance.

Model Predictions

We fit the model to the data aggregated across participants. We set the retri-
eval threshold to -1, activation noise to.20, and base levels to 20 for key
mappings and 2 for decision rules. These base level values were selected
because we anticipated that the decision rules were more difficult to learn
than the key mappings for responding. All other parameters were set to
default values.
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Figure 3: Left: accuracy panelled by subtask. Right: RT panelled by subtask. Observe
data in grey and model predictions in red. RTs measured relative to target

The model captured two important qualitative trends for accuracy (see
Figure 3). First, the model captured the rank order of accuracy for subtask:
PVT > VST > AST > DT. In addition, the model accurately captured lower
accuracy in the high difficulty conditions for the AST and the DT.

The model also captured the rank order of reaction across subtasks, star-
ting with the PVT, followed by VST, AST, and ending with the DT. For
each subtask, the model also captured the effect of task difficulty in which
responses where faster for low compared to high task difficulty. Finally, the
model predicts higher workload in the high difficulty condition (M = 1.06)
than in the low difficulty condition (M = .87). Note that these workload
estimates include the wait time during which workload is estimated to
be zero.

Workload Profiles

One role of automation in human-machine teaming is to reassign agents to
subtasks in response to increased workload. Automation can leverage Cogni-
tive Metrics Profiling (CMP; Gray et al., 2005; Jo et al., 2012) to infer and
predict workload levels across time. CMP uses a cognitive model to estimate
workload from the latent cognitive activity across the various modules within
the architecture. Thus, increased cognitive activity is interpreted as increased
workload. Automation can use CMP in three ways: (1) to estimate overall
workload across a period of time, (2) to estimate capacity specific workload
(e.g., vision vs. memory), and (3) to identify aspects of a task associated with
high workload.

As an example of the third application, Figure 4 shows workload plotted
across time and is color-coded according to the probability of working on
a subtask. A few points of interest can be gleaned quickly through visual
inspection. First, workload peaks acutely during VST, and the DT. Second,
increasing the difficulty of the AST leads to the largest sustained period of
workload between conditions (in green). This suggests that an intervention
targeting the AST would have the most potential to mitigate total wor-
kload, but an intervention targeting VST or DT would reduce workload
peaks.
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Figure 4: Workload as a function of time for low and high difficulty conditions. Darker
regions represent higher workload probability. Workload is color-coded according to
the probability of working on a subtask. See legend for subtask colors.

DISCUSSION

In the present work, we have presented a computational model of
multitasking performance, validated the model against performance data
collected in an empirical task, and demonstrated how the model can
make projections of workload that would be useful for dynamic tasking
applications.

These preliminary data suggest that the cognitive model provides a good
description of participants completing this task. The model accounts for
the relative difficulty of the tasks for average participants both in terms
of accuracy and response time. It also explains the effects of task diffi-
culty on response time using theories of visual search and human-computer
interaction derived from laboratory studies. Finally, the model captures the
numerical ordering of the difficulty conditions in terms of subjective load,
but the observed differences in these conditions is currently far too small to
draw definitive conclusions. If additional data does not reveal a difference
between difficulty conditions, it may suggest need for revision of individual
module contributions to overall subjective load in the model.

Due to the small sample size, these empirical findings are preliminary. We
are in the process of collecting additional data to further inform the model
and ensure the generalizability of the findings. Moreover, we are collecting
physiological data that we believe will be informative both to the predictions
of the model and to the tasking decisions of an Autonomous Manager.

We envision cognitive models informing automation in both offline and
online roles. Offline, cognitive models can be used to analyze workflows,
interfaces, schedules and task demands and provide projections of expe-
cted workload and performance under these scenarios. This input can used
prospectively to inform the design of autonomous systems (see Fisher et al.,
2022, for an example). Models can also be fit to individual humans or
modified based on known individual differences to represent the diversity
of performance profiles possible in a task environment.
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Alternatively, models can be used in an online capacity using techniques
such as model-tracing (Hefferman et al., 2008) and lookup tables (Fisher
et al., 2016) to find appropriate model variants that most accurately reflect
the present situation. These models can be used to update expected perfor-
mance projections allowing for online adjustments to task configurations and
assignments. For example, a model may project a performance decline due to
fatigue after a certain amount of time on task. This projection could be deli-
vered to an AM, allowing the AM to re-task the agent before performance
declines. Similarly, a model could determine that a particular task combina-
tion will result in effective performance for a shorter period than another
combination, allowing the AM to avoid that combination.

CONCLUSION

The integration of cognitive models and autonomousmanagers is a promising
approach for addressing workload, performance, and tasking concerns faced
by human machine teams in industrial, commercial, and military settings.
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