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ABSTRACT

In this work, we present a collection of human-centered pitfalls that can occur when
using machine learning tools and techniques in modern astronomical research, and we
recommend best practices in order to mitigate these pitfalls. Human concerns affect
the adoption and evolution of machine learning (ML) techniques in both existing work-
flows and work cultures. We use current and future surveys such as ZTF and LSST, the
data that they collect, and the techniques implemented to process that data as exam-
ples of these challenges and the potential application of these best practices, with the
ultimate goal of maximizing the discovery potential of these surveys.
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INTRODUCTION

The introduction of machine learning (ML) into the sciences has had an
immense impact on the process of knowledge discovery. This is particularly
true in astronomy, where researchers must analyze the vast quantities of data
that continue to be acquired and cataloged by astronomical surveys (Poudel
et al., 2022). The amount of data collected by astronomers continues to incre-
ase as a result of many factors, including the construction of larger telescopes
which enable the detection of fainter objects, viewing distant objects with gre-
ater clarity through advancements such as adaptive optics, and technological
discoveries that enable observations across non-visible wavelengths of light
(Biewald, 2021). With the petascale era of astronomical data already at hand
and the exascale era soon to follow, human-directed computation alone is
insufficient (Ivezić et al., 2020). Modern astronomy is therefore increasingly
dependent on ML assistance for processing, prioritization, and labeling in
order to gain insight into the secrets of the universe.

Exemplar data-filled discovery spaces for rapid astronomical transients
are provided by surveys such as the Zwicky Transient Factory (ZTF) and
the Large Synoptic Survey Telescope (LSST). In particular, ZTF improves on
its predecessor by increasing the number of visits to every field of view and
picking out optical transients up to ≤18.5 magnitude (Bellm et al., 2019).
In ZTF data alone as of the most recent data release (DR 15), there are
4.58 billion unique astronomical sources, with time series data gathered for
each source (Zwicky Transient Facility, 2023). Moreover, ZTF also generates
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about one million alerts per night, far beyond a data scale that can be suppor-
ted by human-only analysis. Searching for interesting astronomical objects is
therefore data-intensive and has required various ML-based approaches such
as RealBogus classification to identify spurious sources, periodicity searches
for Galactic objects, and anomaly detection algorithms for any photometric
variabilities. ZTF in many ways is a predecessor for the upcoming LSST. LSST
will take the data-driven discovery potential to further and fainter transients
at ≤27 magnitude. It is set to conduct trillions of observations of billions of
stars and galaxies over its 10-year operation timeline (Ivezić et al., 2019).

However, because ML algorithmic decisions must be paired with human
domain expertise, human concerns affect the adoption and refinement of ML
techniques into existing processes. Established workflows and work cultures
are often resistant to change, impacting the introduction of ML. Even when
ML is embraced, mistrust in novel models and slower adoption of novel tech-
niques biases researchers towards selecting known or popular techniques that
may not apply to new data. Alternatively, overconfidence in new technology
can lead to approval of the latest techniques without thorough validation or
guarantees of reproducibility. A constant concern among astronomers is that
errors in their understanding of software, and the conclusions that software
draws, might lead to errors in their understanding of how the universe works
(Biewald, 2021).

In the sections that follow, we discuss the role of ML in modern astronomy
research, identifying ways in which the usage of ML connects to a selection
of human-centric challenges and suggesting Human Factors (HF) techniques
to assist in overcoming these barriers. Each section begins with a challenge
related to the use of machine learning in astronomy, which is then followed
by related HF knowledge, tools, and techniques. We note that generating a
complete list of astronomical machine learning challenges is beyond the scope
of this work; instead, we present a selected list of challenges from our own
experiences.

INITIAL MACHINE LEARNING ADOPTION

The use of computers and computation in astronomical research is not a
recent development. The necessity to store and manipulate vast quantities
of survey data has led to collaborations between astronomers and compu-
ter scientists that have been ongoing for decades, and this includes the use
of ML for astronomical research. However, the rate at which ML (and deep
learning in particular) is finding a role in astronomy projects and publica-
tions is accelerating rapidly (Smith and Geach, 2022). Successful research
on cutting-edge astronomical challenges nearly always requires the usage of
advanced computation. And yet while academic changes are gradually being
introduced, the current curriculum used to instruct astronomers does not
provide sufficient training in machine learning, statistics, or even software
engineering (Biewald, 2021). In addition to recent graduates not receiving
the education and support necessary for success in modern astronomical
research, established researchers also struggle with limited resources for con-
tinuing education, lacking both training resources and a thorough primer on
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current best practices for the use of ML (National Academies of Sciences,
Engineering, and Medicine, 2021). Overall, the introduction of technology
into existing workflows presents a well-known challenge (Wickens, 2004),
and even identifying locations in a workflow that will benefit from new
technology can prove to be challenging (Liebowitz, 2000).

Researchers in HF have long studied impediments to the adoption of tech-
nology, dating back at least to Rogers’ Diffusion of Innovation (Rogers,
1962). Determining the underlying source of the barrier is the first step
necessary to overcome the challenge. Ertmer proposes a pair of adoption
categories, with the first group related to external factors such as a lack of
institutional support or time to learn new technologies, and the second group
related to internal perceptions and attitudes such as resistance to change and
the perception of the new technology (Ertmer, 1999). Noting whether an ado-
ption obstacle is due to external constraints or internal human bias plays a
role in building a strategy to move forward.

When introducing machine intelligence into an established workflow, a
further concern is the reduction in human decision-making autonomy that
accompanies sharing a workload with untrusted technology (BenMessaoud
et al., 2011). One of the outstanding concerns for the use of machine learning
in astronomy and generally any field that deals with copious amounts of data
is the black box nature of it. While we save the discussion of ML trust and
interpretability for another section, it is noteworthy to identify this common
point that can lead to a lack of confidence in the results of the research and
the quality of the process.

ADAPTING TO NEW TECHNOLOGY

While introducing ML into an established workflow is difficult, it may be
even more challenging to update that existing ML with novel techniques. In
addition to adopting techniques that are more efficient or more accurate, this
can also include introducing new techniques that are more appropriate for the
current data under investigation. The costs that are involved in switching to
new models can range from financial to temporal. Common concerns that are
voiced when transitioning to a new technology include concerns about loss
of productivity while integrating a new tool into a workflow (Snoeyink and
Ertmer, 2001), information flow disruption and data continuity, and issues
with data standardization and interoperability. Additionally, when experts
adopt new paradigms, their workload often drastically increases during the
adjustment process (Ludwick and Doucette, 2009).

Another important issue with astronomical data is the high dimensionality
and large volume, along with data gaps leading to information loss (Goo-
dman, 2012). Hence, changes in ML-based approaches while analyzing the
data can lead to vastly different outcomes. As a result, astronomers often
find themselves working with approaches which are well-known, well-tested,
and with high signal-to-noise ratio datasets. However, these approaches may
not be efficient or accurate for datasets with large uncertainties. A com-
mon example of this is the use of random forest classification in astronomy.
While random forest classification algorithms are fast to train and seem to
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outperform other classifications, they are inept at handling labeling uncer-
tainties (Reis et al., 2018), and their performance lags behind more modern
deep learning techniques (Carrasco-Davis et al., 2019).

Task analysis represents one HF method that can assist in overcoming such
issues. The goal of task analysis is to understand and provide insight into
the processes involved in the completion of a task (the astronomical research
challenge under investigation), in order to identify and optimize the overarch-
ing workflow (Stanton et al., 2017). Given a thorough understanding of the
process, task analysis can help to identify the advantages and disadvantages
of altering that workflow. Indeed, the workflow itself represents a human-
centric process of which the choice of ML technology is only one component,
and so a thorough understanding and analysis of the full process is necessary
when determining the best data science models and ML technology that can
work collaboratively with researchers.

As with task analysis, Cognitive Work Analysis (CWA) represents a similar
approach towards understanding the cognitive skills and strategies used by
humans in their workflows, providing a collection of methods to understand
tasks, actors, strategy, and cooperation in complex systems (Vicente, 1999).
Charting techniques such as process charts and event tree analysis also sup-
port understanding these workflows and interactions in a visual medium,
clarifying actions and events that both humans and ML own (Kirwan and
Ainsworth, 1992). As technology continues to evolve and machine intellige-
nce continues to develop, these approaches can also assist in modifying the
current research paradigm in which ML is a tool into a new model where ML
is a partner, an area of research known as human-machine teaming (Lyons
et al., 2019).

TRUST IN MACHINE LEARNING PROCESSES AND RESULTS

While many shallow-learning ML models have somewhat interpretable pro-
perties, many of the frequently-used deep learning models in current astrono-
mical research are much more opaque. It is therefore difficult to understand
the decisions made by complex ML models, yet alone to understand the pro-
cesses undertaken to reach those decisions (Goebel et al., 2018). Further,
uncertainty in interactions between black box models and humans can be
extended by ML that is unaware of human goals or processes (Wenskovitch
and North, 2020). This lack of understanding leads to a variety of issues in
astronomical research, including issues with trust in the research outcomes,
questions about the accuracy of the computations, and concerns in detecting
errors in the process.

Establishing trust is further complicated by data, as astronomical datasets
are heteroskedastic, non-homogenous, and contain gaps. It therefore gets
complicated to quantify the underlying statistical noise uncertainties using
machine learning language of aleatoric and epistemic uncertainties (Caldeira
and Nord 2020, Dvorkin et al., 2022). Therefore, while the ML methods are
being widely adopted by the astronomy community, confidence in these meth-
ods is lacking. As Caldeira and Nord suggest, in deep learning we can reduce
the gap with aleatoric and statistical uncertainties by ensuring a wide range of
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noise realizations. However, for epistemic uncertainties originating from the
data, the problem is still tough to resolve and requires specific understanding
of the scientific problem (Chen et al., 2022). For example, the distribution
of a number of parameters including orbital periodicity, eccentricity, ampli-
tude, and more require estimation in advance of data collection. Because
of data gaps, noise, and limitations in astronomers’ understanding of how
uncertainty cascades through the parameter space, the actual detection of
transients in large-scale surveys such as ZTF may not map well to expected
detection rates (Feindt et al., 2019).

The nascent field of Explainable Artificial Intelligence (often styled as
XAI) provides a human-centered vision for the future interpretability of ML
models, seeking to explain how or why a model has generated its output
(Longo et al., 2020). Indeed, effectively opening the “black box” of deep
learning represents one of the most significant opportunities for the impact
of HF on ML in the sciences. Providing interpretations and evidence for the
decision-making process of a complex model in a way that astronomers can
easily comprehend can lead to the identification of issues in the model that
may require correction, as well as providing new insight into relationships
that underlie the data. Increased trust in the computation and the results
represents a significant benefit to astronomers, while the ML models can
also benefit from improved robustness and algorithmic performance when
their latent properties are better understood (Phillips et al., 2020).

While explainability serves as a first step towards trusting an unfami-
liar ML model, a number of other factors including stability and usability,
accountability, security, and transparency play a role in developing trustwor-
thy ML (Smith, 2019). Fundamentally, a usable and trustworthy technology
must be ready for operational use by humans rather than experimental. The
Human Readiness Level (HRL) scale provides a framework for capturing
the maturity of a technology with respect to usability (Salazar et al., 2020),
paralleling the earlier Technology Readiness Levels (TRL) and ranging from a
Level 1 system (relevant human capabilities are identified) to a Level 9 system
(the system was successfully used in operations with measured performance
benefits). Trust itself can be measured by a variety of metrics (Damacharla
et al., 2018), and scales such as the NASA Task Load Index provide a mental
workload assessment to understand how humans are responding to working
with technology (Hart and Staveland, 1988).

REPRODUCIBILITY

Reproducibility is not an issue tied solely to the use of machine learning, as
research teams can come to differing conclusions from the same data and
when testing the same hypothesis in many contexts (Breznau et al., 2022).
That said, ML has had an outsized effect on reproducibility issues in the
sciences in general (Kapoor and Narayanan, 2022) and in astronomy speci-
fically. Reproducibility issues with ML can also include related technology
concerns, such as documentation or human-centric misunderstandings about
the capabilities of the ML. For example, while searching for periodic obje-
cts through millions of time series objects in optical surveys such as ZTF,
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although training, test and validation datasets might agree the absolute num-
ber of objects belonging to each of the periodic sub-class might differ widely
with difference in periodicity search algorithms or detectability thresholds
used by different collaborations.

Concerns with addressing reproducibility can be found in several HF tech-
niques and approaches, such as establishing inter- and intra-rater reliability
in task analysis and in assessing situational awareness (Stanton et al., 2017).
As such, a number of methods exist to mitigate (but notably not to eliminate)
reproducibility concerns when humans and technology intersect. Team per-
formance analysis techniques such as team communication analysis (Jentsch
and Bowers, 2004) represent one such methodology. Other techniques that
are designed to assess and reduce human errors can be adapted to techno-
logy, including those designed for both retrospective and predictive analysis
of errors (Shorrock and Kirwan, 2002). Additionally, charting techniques
can assist in visually clarifying the roles of humans and technology in scien-
tific workflows, and in the case of Decision Action Diagrams can also depict
decision points and options available to both humans and ML (Kirwan and
Ainsworth, 1992).

SAMPLE SELECTION BIAS

In addition to challenges resulting from a lack of clarity in ML decision-
making, the inappropriate selection of data used to train astronomical ML
models presents a mechanism for introducing error and bias into scientific
processes. As detailed by Scaife (2020), the increasing sensitivity of astro-
nomical surveys to fainter and more distant objects can cause issues with
the use of previous knowledge for training models for these new surveys,
since sample distributions in the previous less-sensitive surveys will be biased
towards brighter object classes. As a result, new astronomical sources identi-
fied by these new surveys will be probabilistically more likely to be classified
as objects that are more common in existing datasets, reducing both model
accuracy and the chances of discovering new object classes and distributions
(Clarke et al., 2020).

As this challenge is primarily a data collection issue, a natural tendency
would be to look towards HF data collection techniques for a solution.
However, most HF techniques focus on the collection of data from humans
using interviews, questionnaires, and observations (Stanton et al., 2017).
Therefore, assistance from HF to address this challenge can best be found
in other classes of techniques. For example, some design techniques can be
used or modified to the ML use case, incorporating special attention in the
design stages of a new ML pipeline and/or human-ML workflow to assist
in the development of software, equipment, and data selection. In particu-
lar, mission analysis (initially designed to analyze operational procedures and
requirements for cockpit design) can assist in breaking down the goals of lear-
ning from new data into mission phases and operation modes, isolating task
function requirements and understanding the necessary inputs for both iden-
tifying the required information for ML and for monitoring the accuracy of
ML (Wilkinson, 1992). Similarly, processes from task-centered system design
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(Greenberg, 2003) can be adapted for evaluating new system design conce-
pts based upon existing systems and tasks. While not obviously as applicable,
some situation awareness techniques can be modified to support an under-
standing of the effects of using existing data in new ML models, notably
rating the quantity and information (Taylor, 1990) and in understanding the
human’s ability to locate and understand relevant information regarding the
current state of the ML (Durso et al., 1998).

CONCLUSION

Looking to the future, we envision a new goal of human-centered machine
learning for astronomy, in which the capabilities and strengths of both human
and machine are optimized and balanced. Approaching the best use of the cre-
ativity of the human and the computational power of the machine necessitates
both human insight into the processes of the machine and well as machine
insight into the goals of the human (Wenskovitch and North, 2020). As astro-
nomers look to emerging technology for integration into ongoing workflows,
practices, and collaborations, a significant role exists for human factors
experts to assist in mediating and enhancing the communication between
researcher and automation.

In short, we assert that astronomers should consider utilizing the expertise
of human factors researchers to the same degree that they look to machine
learning researchers. By understanding and supporting human-centric pro-
cesses, HF strives to identify challenges, formulate solutions, and generally
create more refined processes for scientists to collaborate with technology (de
Winter and Hancock, 2021). Notably, the LSST Collaboration has begun to
fund fellowships in social science prior to the beginning of scientific opera-
tions as the Vera C. Rubin Observatory, supporting research into the ways
that astronomers collaborate and analyze the substantial quantities of data
that will result from this survey (LSST Corporation, 2022). In looking to
the future of technological and computational support for data discovery,
human factors will play a significant and critical role for successful projects
and collaborations.
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