
Human Factors and Wearable Technologies, Vol. 85, 2023, 12–20

https://doi.org/10.54941/ahfe1003622

Improved Affect Prediction Using
Complexity Based Ultra-Short-Term
Heart Rate Variability Features
Abhishek Tiwari1,2, Behnaz Poursartop2, Amin Mahnam2,
and Tiago H. Falk1

1INRS-EMT, Université du Québec, Montreal, QC, Canada
2Myant Inc., Toronto, ON, Canada

ABSTRACT

Heart rate variability (HRV) has been a useful tool for understanding human behaviour.
HRV features, derived from the inter-beat interval (RR) time series, reflect the autono-
mic nervous system processes of the body and have shown correlates with various
mental processes. These processes include mental fatigue, workload, and anxiety,
to name a few. Developing an understanding of these constructs in machines is key
to improving human-computer interaction. However, HRV based emotion recognition
is often limited to detection of negative (stress or anxiety) versus neutral emotional
responses. Such systems when tested with subjects showing wider emotional respon-
ses may lead to errors. In addition to this, it is desirable for such emotion recognition
systems to have high temporal resolution, thus allowing for almost real-time feedback
and adaptive decision making. In this article, we explore the use of novel complexity-
based feature set computed from so called ultra-short-term segments of 60 seconds.
More specifically, we evaluate the potential of HRV features to distinguish stress vs.
amusement vs. neutral vs. relaxation classes. Experiments using the WESAD data-
base show that the proposed features extracted on ultra-short-term window of 60s
and combined with benchmark features provide an overall improvement of 12.92 %
balanced accuracy and 20 % F1-score over using only the benchmark features/
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INTRODUCTION

Most human functions, such as perception, rational decision-making, and
learning, involve the regulation of emotions. The field of affective computing
is therefore focused on developing machines that sense, recognize, respond
to, and influence emotions (Picard, 2000). Development of such emotio-
nal intelligence in machine systems can have applications in several domains
including education, security, and healthcare (Daily et al., 2017). Emotions
modulate various physiological processes by influencing the autonomic and
central nervous systems and their correlates to various physiological signals
have been reported (e.g., Clerico et al., 2018, Parent et al., 2019). This fact,
paired with the recent development in wearable sensing technologies (Perez
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and Zeadally, 2021) makes monitoring heart rate variability (HRV) a viable
method for long-term, continuous, and unobtrusive emotion recognition.

HRV is an indicator of the changes in the autonomic nervous system
and has traditionally been analyzed using time- and/or frequency-domain
features. These features evaluate the contribution of the sympathetic and
parasympathetic nervous systems (Camm et al., 1996) to the overall heart
rate response. In order to compute these features, the inter-beat interval
(RR) time series is extracted from the peaks of the QRS complex of an
electrocardiogram (ECG) signal, or from peaks of pulses measured in a
photoplethysmogram (PPG). Conventional clinical assessment of HRV has
typically relied on long-duration time windows, around 24∼h. Short-term
HRV analysis, in turn, has explored time durations as little as 5∼minutes
and shown to achieve useful results (Camm et al., 1996).

Though short-term analysis of cardiac processes has shown great utility
for offline behavioural analyses, several applications exist in which faster
time responses are needed (Castaldo et al., 2019), especially in life-saving
situations such as first responders or healthcare workers. To this end, so-
called ultra-short-term HRV analyses have been explored in which window
durations smaller than 5∼minutes are used. While some applications have
been reported in the literature (e.g., Castaldo et al., 2019, Tiwari et al., 2020,
Zubair and Yoon 2020), these have been limited to detection of negative (such
as stress or anxiety) vs neutral emotional states. These conditions are limited
to the high-arousal low-valence quadrant of the valence-arousal representa-
tion of affective states (see Fig. 1). As such, the transferability of these models
to other quadrants and affective states has not yet been fully explored.

It is known that the RR time series exhibits complex non-linear behavior
(Ashkenazy et al., 2001). This behavior changes based on different physical
and psychological demands put on the body. Features quantifying this com-
plexity have been recommended in the literature (Tiwari et al., 2019, Tiwari
and Falk 2021). These include multi-scale entropy (Tiwari et al., 2019), as
well as HRV high- and low-frequency subband complexity (Tiwari and Falk

Figure 1: Valence-arousal representation of affective states.
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2021) features. As mentioned above, while these new features have shown
improvements in prediction of negative affect (stress and anxiety), their use
for a wider range of affective states has yet to be explored. This paper aims
to fill this gap.

More specifically, in this paper we explore a 4-class classification task
where relaxed, neutral, amused and stress states are monitored, thus cove-
ring three of the four quadrants in the valence-arousal space (see Fig. 1).
The multi-scale entropy and HRV subband features are extracted over ultra-
short-term window sizes of 60s and experiments are conducted on the
publicly available WESAD (wearable stress and affect detection) database.
Experiments show that the proposed feature set provides important and com-
plementary information for subject-independent affective state monitoring,
thus opening doors for faster and more reliable assessments based on HRV
analysis.

WESAD DATABASE

TheWearable Stress and Affect Detection (WESAD) Database (Schmidt et al.,
2018) is a multi-modal dataset aiming for human affective detection. The
data collection protocol consisted of a 20 minute baseline (neutral) period,
where the participants were reading magazines while waiting for the expe-
riment to start. For amusement, the subjects were shown 11 funny video
clips lasting a total of 392 seconds. Stress was elicited using the well-studied
Trier Social Stress Test (TSST). This test lasted about 10 minutes. Finally,
participants were relaxed using a 7-minute guided meditation exercise that
includes controlled breathing. Clean data were collected from 17 subjects;
each took part in a 2-hour section. The electro-cardiogram (ECG), sam-
pled at 700∼Hz, used for this analysis was recorded using the RespiBAN
chest-band (Biosignalsplux). Other signals recorded in this database include
accelerometer, respiration, and blood volume pulse. Here, only the ECG
data is used.

Typically, discrete emotional states can be mapped on the valence-
arousal (VA) representation, as depicted by Fig. 1. Valence represents
the unpleasant-pleasantness levels, whereas arousal corresponds to the
deactivation-activation. Figure 1 highlights typical emotions seen in each of
the four VA quadrants, with the ones highlighted in blue indicating the sta-
tes available with the WESAD dataset and used herein. The state conditions
elicited from the protocol correspond to as the ground truth labels. For more
information on the database, the interested reader is referred to (Schmidt
et al., 2018).

SIGNAL PROCESSING PIPELINE

The ECG data for each emotional state was first epoched in 60s windows
with 30s overlap. For the neutral state, the first 5 epochs (3 minutes) of
data was rejected to account for transitional changes to ECG after the
beginning of the experiment. Next, for each epoch, a simple pre-processing
step using a bandpass filter (5-25∼Hz) was performed on the ECG signal
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to enhance the R-peaks. Following this, the RR time series was extracted
using an energy-based QRS detection algorithm, which is an adaption of
the popular Pan-Tompkins algorithm. The RR series was further filtered to
remove outliers using range-based detection (>= 280 ms and <= 1500 ms),
moving average outlier detection, and a filter based on percentage change in
consecutive RR values (<= 20 %).

FEATURE EXTRACTION

From the enhanced RR time series, standard time- and frequency-domain
HRV features were extracted, as listed in Table 1. These features were also
computed for each epoch of data (ultra-short-term duration of 60s, 30s
overlap). These have been shown in the literature to correlate with mental
workload (Tiwari et al., 2019) and stress (Castaldo et al., 2019). Complete
details about these measures can be found in (Camm et al., 1996).

Multi-scale permutation entropy (MSE) features were calculated using a
moving average scaling (scales, s = 1-4). These features were calculated both
on the RR and absolute first difference of the RR (dRR) time series, as per
(Tiwari et al., 2019). A moving average filter with a window size s first scales
the time series, followed by permutation entropy calculation.Moving average
scaling adds stability to entropy prediction for a short-time series (Wu et al.,
2013) while permutation entropy provides added robustness to noise (Bandt
and Pompe 2002).

Additionally, spectral descriptor and complexity features were extracted
from the subband HRV series. The HRV subbands impact different phy-
siological processing (Wu et al., 2009) as well as have useful non-linear
coupling (Luo et al., 2018) behaviour. First, the RR series tachogram was
band-passed in the LF (0.04-0.15 Hz) and HF (0.15-0.4 Hz) regions to result
in the RRLF and RRHF subband series, respectively. Next, complexity features
including correlation dimension, detrend fluctuation analysis (DFA), sample
entropy (SampEn) and permutation entropy (PE) are extracted each subband
series. Additionally, spectral descriptors including, centroid, spectral entropy,
spread, skewness, kurtosis, and crest are extracted from the two frequency
regions. In order to quantify the interaction between the two bands, LF-to-HF
and HF-to-LF transfer entropy was also calculated.

Overall, a total of 13 benchmark and 30 proposed (8 multi-scale and 22
HRV-subband) features were extracted for the four different emotional states.
The pipeline for extracting the benchmark and proposed features is shown
in Fig. 2. For more information regarding the features, the interested reader
is referred to (Tiwari et al., 2019, Tiwari et al., 2021).

Table 1. Benchmark HRV features extracted.

Time domain features Frequency domain features

Mean, standard deviation, RMSSD,
pNN50, coefficient of variation, pNN20.

High- (HF), low- (LF), and very low-
(VLF) frequency power, normalized LF
and HF, HF/LF ratio



16 Tiwari et al.

Figure 2: Processing pipelines for extraction of (A) Benchmark (B) Multi-scale entropy
and (C) subband-HRV Features.

MACHINE LEARNING PIPELINE

Three feature sets were explored for emotion prediction: benchmark alone,
proposed alone, and fusion of both. For each of these feature sets, a
subject-wise min-max normalization approach was used to account for inter-
individual differences and help the model generalize to new subjects. Dataset
imbalance during training can make minority class classification harder.
Oversampling methods help by data augmentation of the minority class. As
such, we make use of the Adaptive Synthetic Sampling Approach (ADASYN)
for oversampling. This method generates more “harder-to-learn” examples
for the classifier by accounting for majority class dominance near a mino-
rity class sample (Lemaitre et al., 2017). For classification purposes, linear
models can be more easily interpreted and provide information about fea-
ture importance, thus are used in our study. Additionally, logistic regression
has the advantage of being tolerant to high-dimensional datasets. As such,
the classification results reported herein can be considered as a lower bound
on possible achievable performance and higher accuracy could be achieved
with more complex models (this is left for future study). The classifier was
used for performing 4-way classification between stress (S) vs. amusement
(A) vs. neutral (N) vs. relaxed (R). To ensure generalizability of the model
over new subjects, the evaluation was done using a leave-one-subject-out
cross-validation setup.

For performance evaluation, balanced accuracy (BACC) and weighted
F1-score (F1) were used as figures-of-merit along with class-wise accuracy.
Moreover, to assess feature importance the minimum redundancy maximum
relevance (mRMR) (Peng et al., 2005) feature selection approach was used.
The machine learning pipeline was built and evaluated using the python
scikit learn (Pedregosa et al., 2011) and imbalanced learn (Lemaitre et al.,
2017) packages. Overall, classifiers were trained with the top-10 features
for all feature sets, as selected by mRMR. In order to assess the importa-
nce and generalizability of features, we analyze the list of most frequently
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selected top features (features appearing at-least 80 % of the time across all
subject-independent models).

RESULTS

Classification results for the three tested feature sets are shown in Table 2.
As can be seen, the proposed feature set by itself is not able to outperform
the benchmark features. However, the proposed set provides complemen-
tary information that can further boost performance once fused together. In
fact, gains of 12.9 % BACC and 20 % F1 were achieved with the fused set
relative to the benchmark set alone and of 24.7 % BACC and 23.2 % F1
relative to the proposed set. Looking at the class-wise accuracy, it can be
observed that the benchmark features are able to distinguish stress vs. no
stress cases with high accuracy (S-ACC = 0.916) compared to the proposed
features (S-ACC = 0.764). However, for the other classes, the proposed fea-
ture set either gives a comparable (for amusement) or higher performance
(8.1 % for relaxed and 7.4 % for neutral) compared to benchmark feature
set. With the fused set, a slight drop in accuracy is seen for stress class perfor-
mance (−1.52 %), while further improving performance on the other three
classes. Overall, improvements of 7.67 % for neutral, 3.81% for amusement,
and 17.2 % for relaxed states, respectively, could be seen relative to baseline
alone. Overall, the combined feature set is better able to distinguish between
the high valence emotional states compared to benchmark features. This is
specially true for neutral and relaxed state, given the larger improvement seen
in performance.

Lastly, Table 3 lists the top consistent features. Of the 6 feature which
consistently appear in the top feature set, only 2 are from the benchmark
feature set. These include the RMSSD and LF power. RMSSD is an indica-
tor of parasympathetic activity while sympathetic activity is marked by an

Table 2. Performance for different feature sets (S = Stress, A = Amusement, N = Neu-
tral, R = Relaxed).

Features BACC F1 S-Acc A-Acc N-Acc R-Acc

Benchmark 0.557 ± 0.11 0.543 ± 0.13 0.916 ± 0.12 0.762 ± 0.10 0.691 ± 0.12 0.753 ± 0.12
Proposed 0.504 ± 0.11 0.529 ± 0.14 0.764 ± 0.08 0.752 ± 0.10 0.742 ± 0.11 0.814 ± 0.08
Combined 0.629 ± 0.12 0.652 ± 0.13 0.902 ± 0.14 0.791 ± 0.07 0.744 ± 0.10 0.883 ± 0.08

Table 3. Features appearing in the top fea-
ture set for most subjects.

Feature Name % Subjects

MSE (dRR, s = 4) 100
LF-DFA 100
HF-SampEn 93
LF-crest 86
RMSSD 86
LF power 86
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increase in LF power. Stress is usually associated with a decreased parasym-
pathetic and an increased sympathetic response (Kim et al., 2018). These
features have previously been correlated with emotional changes in the lite-
rature (Kim et al., 2018,Mccraty et al., 1995, Shi et al., 2017). The remaining
four features (including the top 3) are all from the proposed feature set. More
specifically, 3 of the features are from the subband HRV features while one is
a multi-scale entropy feature. The top feature which was in the selected fea-
ture set for all subjects is the multi-scale entropy calculated on the dRR series
for a scale of 4. The non-linear behavior of the dRR series and its relevance
for heart rate disease detection was previously explored in (Ashkenazy et al.,
2001). More recently, the complexity of the dRR series was important for
mental workload prediction in the presence of physical activity (Tiwari et al.,
2019). Fifty percent of the top features being from the HRV subband feature
set further underscores the importance of separately characterizing the non-
linear and spectral characteristics of LF and HF band behaviors of the RR
time series (Tiwari et al., 2021). Sample Entropy of the RRHF series is the 3rd
most commonly occurring feature across subjects. Previously, non-linear beh-
avior of the HF band has been associated with circadian (sleep/wake) effects
which were independent of HRV change due to age (Wu et al., 2009). More-
over, a higher scale value corresponds to the importance of low frequency
components (sympathetic activity) of RR series. This is further evident by
two-thirds of the top features related of LF component of HRV.

CONCLUSION

In this work, we explored the use of ultra-short-term HRV complexity fea-
tures for a multi-class emotion classification task. Experimental results show
the importance of the proposed features, as well as their complementarity to
benchmark HRV features. With the fused set, an improvement of 20 % in
F1-score could be seen relative to using the benchmark set alone. Analysis of
class-wise accuracy further validates the use of the combined feature set for
affective state detection across the valence-arousal space, thus improving on
previous work that focused on just one such quadrant. Analysis of the top
features shows the importance of the proposed features, as well as separately
characterizing LF and HF behaviours of the RR series, and the importance
of the LF band in overall emotion recognition.
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