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ABSTRACT

The human dimension information is crucial for efficient building energy saving,
comfort conditions, health and productivity, and security management. Existing
vision-based building indoor occupancy measurement approaches have achieved
remarkable progress, but struggle to achieve high and robust accuracy because of the
complex indoor environments. Vision-based methods face many challenges, inclu-
ding background objects and diverse scales, which bring practical problems to indoor
applications. In this paper, to address these issues, we propose a Multi-source infor-
mation fusion network in video head detection for estimating building occupancy. Our
method utilizes cameras to capture surveillance videos and analyses them through a
deep neural network. We use the multi-source feature to effectively guide the single-
frame detector to propose robust head boxes. We apply a multi-source fusion network
to extract features. Besides, we extend head detection datasets with multi-source
information, including optical flow maps, depth maps, frame difference maps, etc.
Our method achieves superior performance through ablation studies compared to
existing methods on practical building surveillance videos. Experiments validate its
potential for building energy saving and comfort improvement with a high occupancy
estimation accuracy.
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INTRODUCTION

The human dimension information plays a significant role in practical buil-
ding energy saving and comfortable indoor environments. Recent research
shows that buildings consume approximately 40% of global energy (Simona
et al., 2018), while building control strategies based on occupancy informa-
tion can save energy by 20%–45% and improve thermal comfort by 29.1%
(Xie et al., 2020). Building occupant-centric control (OCC) adopts a closed-
loop feedback strategy (Zou et al., 2017) to control heating, ventilation and
air-conditioning (HVAC), and lighting systems.

To implement OCC, many sensors have been applied to sense the occu-
pancy information, including passive infrared (PIR) sensors, carbon dioxide
(CO2) sensors, temperature and humidity sensors,Wi-Fi, Bluetooth, cameras,
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and power plugs. Vision-based occupancy information measurement, achie-
ving accurate performance, has recently become a hot research topic (Choi
et al., 2021, Sun et al., 2022b). Vision-based methods usually capture image-
s/videos using cameras and then recognize people through computer vision
and deep learning technologies.

As a key method of building occupancy information measurement, people
detection has achieved remarkable progress (Chen et al., 2021). With the
development of deep learning, the methods based on convolutional neural
networks (CNNs) and Transformer dominate this field. These methods are
mainly divided into three categories: body, face, and head detection.

In buildings, body and face detection struggle to achieve high and robust
accuracy because of the complex indoor environments (Sun et al., 2022a,
Zou et al., 2017, Trivedi and Badarla, 2020). The limitations of body and face
detection methods have gradually been exposed. Instead, head detection has
a wider range of applications because human heads are visible and reliable in
complex indoor environments. In this paper, we focus on the head detection
task.

Although many head detection methods are well-advanced (Vora and Chi-
laka, 2018, Ke et al., 2021, Zheng et al., 2022), the head detection task
is still challenging. Background objects (e.g., black balls, bags) have simi-
lar features (color, size, texture) to human heads; small-scale, diverse-pose,
and low-illumination heads are hard to be detected in crowd scenes. Besides,
in video applications, directly applying head detection to every frame often
suffers from an unaffordable cost. Long-range video detection/tracking meth-
ods would be inaccurate when the appearance of heads dramatically changes,
especially as heads move fast or the interval between two nearby frames is
large.

To achieve accurate and fast video head detection, the input information
sources are important. Motion information can enhance the head features
and suppress background features: optical flow and frame difference (Sun
et al., 2022a). A depth map can provide useful complementary information.
A density map can highlight the spatial features of heads. But the optical
flow and frame difference would be inaccurate when the background chan-
ges drastically, or the foreground hardly moves (Zhao et al.). Depth maps
and density maps have much inherent noise. However, existing studies focus
mainly on head detection in static images, depth, or optical flow maps.
How to combine the multi-source information to solve the above challenges
problem is not considered by previous methods.

Motivated by these observations, we propose a Multi-source Information
Fusion Network (MIFN) for video head detection at the pixel level. To our
best knowledge, it is the first to jointly train the RGB frame, the pixel-level
motion information (optical flow and frame difference map), the depth map,
and the density map into an end-to-end CNN network in video head dete-
ction. It uses the four-source feature to effectively guide the single-frame
detector to propose robust head boxes. Our contributions are as follows:

(1) We present a novel solution and new insight for video head detection
and building occupancy estimation by utilizing pseudo-information fusion
to provide a comprehensive location and appearance information of video
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heads. (2) We extend an indoor head detection dataset with multi-source
information, including optical flow map, depth map, frame difference map,
and density map. (3) We design a pseudo-siamese convolutional network and
a feature purification method to get multi-source compatible features. (4)
Experimental results indicate that the proposed method significantly surpas-
ses the existing state-of-the-art algorithms on the popular Restaurant dataset.
(5)We applyMIFN to occupancy counting and building energy-saving, which
confirms its potential in practical building control systems.

METHOD

Given an image, we have a feature extraction network Nfeat, and a detection
network Ndet. The output for input image I is Ndet(h), where h = Nfeat(I).

Multi-Source Fusion

The process is shown in Fig 1. Our system processes the original image I
without additional sensors. We adopt a transfer learning strategy, using deep
neural networks to automatically generate five-source pseudo-data, and input
them to the feature fusion network in parallel:

Idiff =
∣∣If − If−1

∣∣ , f = 1, . . . ,N,

Iflow = Fflow
(
If, If−1

)
, f = 1, . . . ,N,

Idept = Fdept (If) ,

Idens = Fdens (If) ,

I = If.

We will use the pre-trained model to obtain five-source data: Fflow belongs
to the optical flow estimation task and we use an approximation function
(Teed and Deng); Fdept belongs to the depth estimation task (Yuan et al.,
2022); Fdens belongs to the head density estimation task (Liang and Weiand

Figure 1: Pipeline of MIFN.
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Bai). Idiff is directly obtained from the difference between two frames. Due
to we generates five-source information, the fused feature can be written as:
h = Nfeat(I, Idiff, Iflow, Idept, Idens).

Considering the convenience of feature fusion, we use a pseudo-siamese
network (same structure with different weights) to extract different data and
then perform two fusions at the feature level. First, we concatenate the five-
source features in the channel dimension:

hcat = Cat(Nfeat1
(
Idiff

)
,Nfeat2

(
Iflow

)
,Nfeat3

(
Idept

)
,

Nfeat4
(
Idens

)
,Nfeat5(I)).

Then, we propose a hybrid strategy of convolutional attention and self-
attention mechanism. For the convolutional attention mechanism, we use the
lightweight convolutional attention mechanisms of the network structure:

hfuse = Attention
(
Conv

(
Conv

(
hcat

)))
.

Where we first perform the attention mechanism, extracting the spa-
tial coordinate information of multi-source coupling. Subsequently, we will
implement the self-attentionmechanism strategy on the obtained features and
the original features:

hfuse = α1 · Conv
(
Conv

(
hfuse

))
� hcat + β1 · hcat.

Where we use the convolutional network before fusion to construct a lear-
nable mask and predict the score of the features so that more effective head
features can be selected.

Second, we separate channels and re-concatenate the features:

hmotion = Cat
(
Conv

(
Conv

(
hfuse1

))
,Conv

(
Conv

(
hfuse2

)))
,

hstatic = Cat(Conv
(
Conv

(
hfuse3

))
,Conv

(
Conv

(
hfuse4

))
,

Conv
(
Conv

(
hfuse5

))
Where we perform convolution operations on the features after channel

separation, and then concatenate the corresponding features of motion and
static respectively to prepare for the next fusion:

hfuse = α2 · hstatic � hmotion + β2 · hstatic.

Head Detector

After getting the fused features, we can apply many detectors: convolution
and Transformer-based detectors. To simplify the process, we use a modified
RPN to propose head boxes.(

c,p
)
= Ndet

(
hfuse

)
.

Where c =
(
cx, cy, cw, ch

)
, is the matrix that contains the parameterized

coordinates of anchor boxes. cx, cy are the predicted center coordinates of
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head boxes, while cw, ch are the predicted width and height of head boxes. p
is the probability matrix that predicts the head category.

To train the network, labels will be generated as follows. We convert
every ground truth head box H =

(
Hx,Hy,Hw,Hh

)
to the parameterized

coordinate:

ĉx = (Hx − Ax) /Aw

ĉy =
(
Hy − Ay

)
/Ah

ĉw = log (Hw/Aw)

ĉh = log (Hh/Ah) ,

where A =
(
Ax,Ay,Aw,Ah

)
is one of the anchors. Ground truth para-

meterized coordinate matrix ĉ will be generated. Ground truth cate-
gory matrix p̂ will be generated by directly distinguishing whether the
anchor contains a head or not (1 or 0). We employ a multi-task
loss function:

L(c, t) =
1
Ns

∑
n

[
Lcla

(
pn, p̂n

)
+ Lbox (cn, ĉn)

]
.

As mentioned above, for each bounding box, ĉn is the category ground-
truth, and p̂n is the coordinate ground-truth. n is the index of the bounding
box. We wish to minimize the distance between each predicted anchor box
(pn, cn) and the corresponding ground truth. Lcla is the cross-entropy loss,
while Lbox is the smoothed L1 loss. The loss term is normalized byNs, where
Ns is the number of positive samples. Also, the loss function is computed
using only positive samples. Positive samples are defined by three strategies:
(1) IOU between anchor box and ground truth label ≥ 0.7. (2) Each ground-
truth box overlaps with many anchor boxes, and we mark the anchor box
corresponding to the largest IoU as a positive sample. (3)We limit the number
of positive samples to ≤16. After defining the loss function, the backbone
network and the detector are jointly trained end-to-end.

EXPERIMENT

To evaluate MIFN, we test the publicly available crowd Restaurant dataset
(El Ahmar et al.). For evaluation metrics, we use the standard average pre-
cision (AP50). The Restaurant dataset was collected in four different indoor
locations at a restaurant. It includes 1610 images, from which the test set
contains 123 images. The images are extracted from the video with a large
time interval, thus having significant diversity and difference.

Our detection network is described in SectionMethod. The training hyper-
parameters are given. Backbone uses the first 11 layers of the MobileNetv2
network pre-trained on the ImageNet dataset. The anchor box sizes are sele-
cted as 2 and 4, and the whole model is trained by the SGD optimizer for 50
epochs. The learning rate is 10-2, which decays to 10-3, 10-4, and 10–5 after
15, 35, and 42 epochs, respectively. The detector RPN network consists of 5



Multi-Source Information Fusion Network for Building Occupancy Estimation 131

convolutional layers, initialized using a standard normal distribution with a
standard deviation of 0.01. We set α1 = β1 = α2 = β2 = 1. The batch
size is set to 1.

The results are shown in Tab. 1. Our MIFN is superior to other SOTA
algorithms (including detectors based on CNN and Transformer). It is worth
noting that we use the MobileNetv2 network (Sandler et al.). Although this
network is lightweight, the network performance will decrease. Even in this
case, our algorithm is still excellent.

For further analysis, we conduct ablation experiments to explore the
importance of multi-source information, as shown in Tab. 2. We found
that: the pseudo-multi-source information effectively improves the network
performance and does not require additional sensors; motion information,
especially frame difference information, plays a key role in head detection;
density information can further improve and enhance the head detection
network. A partial visualization of the qualitative results is shown in Fig. 2:
We show successful results where all heads are accurately detected even when
several heads are small. There is an error in the bottom-right image, and
the head with the red hat is missing. In conclusion, the experimental results
validate the effectiveness of our algorithm.

Applications: Building Occupancy Estimation and Energy-Saving

Building occupant-centric control is an important application of occupancy
estimation for indoor comfort and energy-saving (Naylor et al., 2018). Our

Table 1. Comparison of MIFN against other SOTA methods on restau-
rant dataset.

Method Backbone AP50

HTC++(Chen et al., 2019) Swin-B 0.68
SSD (Ke et al., 2021) ResNet18 0.51
FCHD (Vora and Chilaka, 2018) VGGNet16 0.75
CrowdDet (Chu et al., 2020) ResNet50 0.61
Iter-E2EDET (Zheng et al., 2022) ResNet50 0.61
MPSN(Sun et al., 2022a) MobileNetv2 0.84
MIFN MobileNetv2 0.86

Table 2. Ablation study on validation and test sets of restaurant data sets.MN2:
MobileNetv2.

Method Module val AP50 test AP50

MN2+RPN RGB ∼ 0.785
MN2+RPN RGB+Flow 0.759 0.790
MN2+RPN RGB+Diff 0.752 0.838
MN2+RPN RGB+Diff+Flow 0.749 0.826
MN2+RPN RGB+Diff+Flow+Depth 0.804 0.841
MN2+RPN RGB+Diff+Flow+Depth+Density 0.811 0.860
MN2+RPN RGB+Diff+Flow+Depth+Density 0.830 0.856
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Figure 2: Visualization of MIFN on the test set of restaurant dataset.

previous sections have demonstrated an accurate indoor occupancy estima-
tion method utilizing multi-source information fusion. In this section, we will
use the occupant estimations of the restaurant dataset to design the OCC
algorithm for energy saving.

Two different areas in the restaurant dataset are selected as the applica-
tion scenarios. These two scenarios detected 104 and 102 frames in total,
respectively. The indoor HVAC equipment is considered to be fan coil units
(FCU), which is widely used for public buildings like offices, restaurants, etc.
(Lu et al., 2009). With the increment of indoor occupants, the cooling load
and the amount of fresh air required to maintain indoor air quality will both
increase. Therefore, the FCU should enlarge the supply air volume as the
number of people in the room increases. Our OCC algorithm is designed
based on the occupant estimations’ distributions. Thus, we counted the distri-
bution of the estimated results of the restaurant dataset, as Fig. 3 illustrates.

The control bounds of FCU are determined by the α-upper quantiles of
occupant distributions, which satisfies:

F (α) = xα, s.t. P (X > x) = α, (1)

where xα is the occupant number for the α-upper quantile, X is the indoor
occupant number, and αε[0, 1]. Since the FCU device only has three fan speed
levels (low, medium, and high), we choose the occupant numbers for 0.33,
0.67, and 1-upper quantiles as the control bounds for the fan speed control.
The OCC algorithm for an FCU is:

C (FCU) =

high, if X > x0.33
medium, if x0.67 < X ≤ x0.33
low, if X ≤ x0.67

. (2)

According to Eq. (1) (2), the control bounds for scenarios 1 and 2 are listed
in Tab 3:

We followed the work (Atienza Márquez et al., 2017) to evaluate the
energy cost of an FCU at different fan speed levels. We compared the power
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Figure 3: Occupant frequency distributions for the application scenarios.

Table 3. Control bounds for our OCC algorithm.

Fan speed level Occupant range

Scenario 1 Scenario 2

high >3 >4
medium 3 3 and 4
low <3 <3

expectations of our OCC algorithm and the baseline full-open strategy, which
can be calculated by:

E(w) =
n∑

i = 1

w(i)
n

, (3)

where n is the total frame number, w(i) is the FCU’s power (kW) at the ith
frame. The power comparisons of different control algorithms are listed in
Tab 4.
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Table 4. Power expectation comparisons.

Method Baseline Scenario 1 Scenario 2

Power expectation (kW) 8.41 6.77 6.68
Relative power reduction (%) - 19.50 20.58

The results indicate that our OCC algorithm can save about 20% HVAC
energy compared to a non-OCC baseline strategy, which has shown a great
energy-saving potential of our method.

CONCLUSION

In this work, we propose an occupancy estimation system using a multi-
source fusion network and object detector. Experimental results demonstrate
that our algorithm achieves SOTA performance and verifies proposed insi-
ghts. Mathematical results find our algorithm has a significant potential to
save about 20% of energy in buildings. As for future work, we will extend
our algorithm and datasets to obtain occupancy distribution information for
different rooms and scenes.
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