Human Factors in Cybersecurity, Vol. 91, 2023, 121-131 AH FE
https://doi.org/10.54941/ahfe1003726 |pternational

Architectural Design for Secure Smart
Contract Development

Myles Lewis

University of Alabama, Tuscaloosa, AL 35404, USA

ABSTRACT

As time progresses, the need for more secure applications grows exponentially. The
different types of sensitive information that is being transferred virtually has sparked a
rise in systems that leverage blockchain. Different sectors are beginning to use this dis-
ruptive technology to evaluate the risks and benefits. Sectors like finance, medicine,
higher education, and wireless communication have research regarding blockchain.
Futhermore, the need for security standards in this area of research is pivotal. In recent
past, several attacks on blockchain infrastructures have resulted in hundreds of milli-
ons dollars lost and sensitive information compromised. Some of these attacks include
DAO attacks, bZx attacks, and Parity Multisignature Wallet Double Attacks which tar-
geted vulnerabilities within smart contracts on the Ethereum network. These attacks
exposed the weaknesses of current smart contract development practices which has
led to the increase in distrust and adoption of systems that leverage blockchain for its
functionality. In this paper, | identify common software vulnerabilities and attacks on
blockchain infrastructures, thoroughly detail the smart contract development process
and propose a model for ensuring a stronger security standard for future systems leve-
raging smart contracts. The purpose for proposing a model is to promote trust among
end users in the system which is a foundational element for blockchain adoption in the
future.

Keywords: Smart contract, Blockchain, Software development, Cybersecurity

INTRODUCTION

Blockchain leverages decentralization techniques for database systems. The
purpose of these systems is to promote trustless relationships between entities
utilizing the systems, secure transmission and data storage, and the immuta-
bility of information stored onchain. Software development vulnerabilities
in common blockchain infrastructures have been researched in (Chen et al.
2020; Gupta et al. 2020; Kushwaha et al. 2022).

Software vulnerabilities and threats within blockchain infrastructures typi-
cally can be located within the smart contract design phase (Wohrer and
Zdun, 2018). New programming languages are being leveraged to automate
the data transmission and state of information on chain by programmers.
Solidity is a statically-typed programming language for the Ethereum blo-
ckchain. Pact is a programming language used for smart contract develo-
pment on the Kadena network. Liquidity is a high-level typed smart contract
language for the Tezos blockchain. Software development vulnerabilities

© 2023. Published by AHFE Open Access. All rights reserved. 121

https://doi.org/10.54941/ahfe1003726

122 Lewis

can be located in the smart contract development stage since that is where
programmers can develop code that can be implemented to handle data
transmission and manipulation on-chain.

Types of Analysis

Smart contract security can be broken in two parts: logical errors and seman-
tic misunderstandings from developers when programming. Also, Smart
contract analysis can be broken in two parts: Static and Dynamic Analy-
sis (Vivar et al. 2020). Static analysis pertains to the behavior of the program
from its compiled binary code without executing the code. Observations can
be made to look for patterns that can lead to vulnerabilities.

Dynamic analysis acts in the execution phase, detecting vulnerabilities that
could have gone unnoticed during the static analysis (Vivar et al. 2020).
By examining the security of the code in this stage of development through
access control, encryptions, and vulnerabilities, we can further secure the data
transmission and storage. The type of analysis relies on when the system is
being evaluated in the development process. Most common forms of dynamic
analysis found in literature pertains to execution tracing, symbolic analy-
sis, validation of false/true positives, performance analysis, fuzz testing, and
symbolic execution.

Overall, these are just a few examples of the types of dynamic analysis that
can be performed on smart contracts. Dynamic analysis can be an important
tool for identifying potential vulnerabilities and improving the security and
reliability of smart contracts.

Types of Attacks

Tools have been developed to find common software development vulne-
rabilities in smart contracts, Oyente (Luu et al. 2016). Oyente is used to
find common vulnerabilities and notify the user for highly vulnerable smart

Table 1. Static analysis types alongside their definitions.

Types of Analysis Definition

Disassembly The process by which binary code is translated into an
human-readable set of instructions

Syntax Checks the syntax of the smart contract code to ensure

that is follows the regular parameters of the
programming languages

Control Flow Graph The representation using a graph of the possible paths

(CFG) that the execution of a program can follow

Vulnerability Leverages automated tools to scan a smart contract for

Scanning known vulnerabilities or potential issues

Formal Verification Use of mathematical techniques and formal methods to
prove the correctness and completeness of smart
contract

Resource Usage Evaluate the use of resources such as gas or

computational power by a smart contract

Architectural Design for Secure Smart Contract Development 123

contracts located onchain. The most common vulnerabilities that are found
are: Callstack Depth Attack Vulnerability, Reentrancy Vulnerability, Asser-
tion Failure, Timestamp Dependency, Parity Multigeniture Bug 2, Unchecked
Inputs, Unhandled Exceptions and Transaction-Ordering Dependence. Unch-
ecked inputs occur when smart contracts do not properly validate the input
it receives from external sources outside of data stored on the network. Atta-
cks can supply malicious input to cause the contract to behave outside of its
initial functionality. Also, unhandled exceptions occurs when smart contra-
cts do not properly handle exceptions or errors upon deployment. Attackers
can then trigger unpredictable exceptions in the contract which can lead to
crashes or unpredictable behavior. It is important for developers to be aware
of these software vulnerability issues in blockchain frameworks by executing
good security measure practices in their code, as much as needed.

RELATED WORKS

Blockchain technology has attracted significant attention in recent years,
with many researchers exploring its potential applications and challenges
(Chen et al. 2018). In this section, I review some of the key research in the
field to provide valuable insight and guidance for future development in
blockchain security protocols.

Smart Contract Security

(Atzei et al. 2017) examined smart contracts on the Ethereum network to
provide most common software programming is- sues that lead to vulne-
rabilities. The smart contracts evaluated were involved with current DeFi
applications, to showcase the immediate need for a smart contract evalua-
tion protocol to be in place. The most common issues is detecting mismatches
between their intended behavior and the actual one, or vali- dating functiona-
lity. Verification tools can aid in this problem more quickly than developing
a Turing-complete language.

Oyente (Luu et al. 2016), can be used to detect vulnerabilities through sta-
tic analysis of the contract code. More specifically, Oyente extracts the CFG
through the Ethereum Virtual Machine (EVM) bytecode, then symbolically
executed to find vulnerability patterns. Most common vulnerabilities found
are exception disorder, time constraints, unpredictable state and reentrancy
(Atzei et al. 2017). Frameworks are being developed in the current state-of-
the-art for application verification on blockchain infrastructures. (Bhargavan
et al. 2016) proposed a functional programming language aimed at program
verification, F*. F* is an example of static analysis, as it examines the con-
tracts coded in solidity and EVM bytecode. By being given the solidity code
and the correct compilation of the solidity code, the tool can verify that the
two pieces of code have equivalent behaviors before being deployed onto the
network.

Other tools such as Zues, Osiris, Smartcheck (Tikhomirov et al. 2018), and
Securify (Tsankov et al. 2018) exists to aid in strengthening software security
in the smart contract development stage (Garfatta et al. 2021).

124 Lewis

Software Security Design

Blockchain systems can utilize current smart contract security tools to cre-
ate a conceptual security protocol design for future blockchain development.
Security protocols are necessary in establishing a software security standard
to ensure trust of nodes utilizing a system. This trust is essential in progres-
sing blockchain technologies forward. But, there are limits in research that
prohibit the terms of what makes a smart contract secure. For example, there
are no concrete metrics for evaluating and comparing smart contracts, con-
sistent smart contract code analysis or analytical coding methods that are
easily digestible for traditional programmers (Vacca et al. 2021).

An important component to constructing a secure smart contract is to care-
fully design and implement the contract using sound software engineering
principles, and to thoroughly test the contract for potential vulnerabilities
before deploying it to a blockchain network. This design should apply to all
lifestyles of the smart contract, which include after deployment.

Blockchain Security

Issues revolving around blockchain components such as consensus algori-
thms, cryptography, public ledgers can provide the necessary information
that attackers need to attack the network. By using this information, atta-
ckers can perform various attacks that the smart contract will inherit because
smart contracts are built on top of these blockchain networks. This is rele-
vant to the work as the security of the underlying blockchain platform can
contribute to the security of the smart contracts.

There are several ways that security issues with a blockchain network can
affect the smart contracts built on top of that network.

First, if the blockchain network itself is not secure, it can make it easier
for attackers to compromise the smart contracts running on that network.
For example, if an attacker is able to gain control of majority of the nodes in
the blockchain network, they can potentially disrupt the network’s operation,
making it difficult or impossible for the smart contract to execute as intended.
This is referred to as a 51% attack in which hackers gain control of a majority
of the network’s computing power and use it to manipulate the blockchain
and execute unauthorized transactions (Aggarwal and Kumar, 2021).

Second, if the blockchain network is not transparent and immutable, it can
make it more difficult for users to verify the security of the smarts running
on that network. For instance, if a smart contract contains a bug, or vulnera-
bility, it may not be immediately apparent to users, and this can create a risk
of loss or damage for users of the contract.

Third, if the blockchain network does not provide strong security gua-
rantees for the execution of smart contracts, it can make it more difficult
for users to trust the contracts running on that network. For example, if a
smart contract is not executed in a secure, tamper-proof manner, users may
be hesitant to use the contract, which can limit its usefulness and adoption.

Ultimately, issues that can affect the security of blockchain can impact the
security on smart contracts (Atzei et al. 2017). It’s important for blockchain

Architectural Design for Secure Smart Contract Development 125

networks to prioritize security in order to ensure the integrity and trustwor-
thiness of the smart contracts running on those networks. This can help to
foster a more secure and stable environment for smart contract development
and use.

METHODOLOGY

In the literature, there is an extensive amount of resources into developing
tools to analyze smart contracts, but there lacks a cohesive structure in uti-
lizing these tools together. The structure can be used as a protocol that can
validate and issue certificates for these evaluated smart contracts. The goal
of my research is to design a conceptual model for a software security pro-
tocol for smart contract development. The key components for my approach
involve combining static and dynamic analysis, identifying common software
vulnerabilities, and distributing a security rating certificate.

Constructing Smart Contracts

Typically from proper software programming practices, conceptualization is
first. In constructing smart contracts, conceptualization is to define terms and
conditions of the contract, functionality of the contract, requirements from
the parties involved and expected outcome.

Next, the pseudocode for the smart contract can be coded. This is perfor-
med through a high-level programming language, such as Solidity, which is
designed for constructing smart contracts.

Following conceptualization and development of the contract, the code
must be tested. The testing and debugging phase is to ensure that it is correct
and free of errors. Practically, this debugging process is run on a local or test
blockchain network that simulates various scenarios to verify that the con-
tract behaves as expected. My approach begins to differ in this stage to apply
static analysis on the smart contract alongside the debugging and testing on
the testnet.

The core steps in constructing a smart contract involve defining the con-
tract’s terms and conditions, testing and debugging the contract’s code on the
testnet, then applying static analysis.

Static Analysis

Static Analysis is a process that is commonly used in soft- ware development
to identify potential bugs, vulnerabilities, or other issues in the code with-
out actually executing or deploying the code to interact with information on
the main network of the blockchain. In the context of smart contracts, my
approach to static analysis is to identify potential vulnerabilities in the con-
tract’s code, such as improper use of cryptography, unhandled errors, issues
that can compromise the security or integrity of the contract, and any of the
other vulnerabilities previously mentioned in prior sections.

There are several steps in my approach of performing static analysis on
a smart contract. Initially, the contract’s code is analyzed using specialized
tools and techniques to identify potential vulnerabilities or issues. These tools
are specifically designed for smart contract development, such as Oyente or

126 Lewis

Zeus. Other general-purpose tools may exist that are used for static analysis
in other contexts, but this research sticks to Ethereum based smart contract
which require Ethereum based analytical tools.

Subsequently, the results of the static analysis are to be reviewed and analy-
zed by a human, with considerable knowledge in blockchain security, to
confirm the findings and determine the potential impact of any identified
vulnerabilities. This can involve performing contract code reviews, testing
the contract in simulated environments or test net cases, or consulting with
other researchers in the field of smart contract and blockchain security to
confirm the findings and assess the risks.

Once the results of the static analysis have been reviewed and confirmed,
a report is generated that summarizes the findings and provides two things:
a recommendation of steps the developer can take to improve the security
of the constructed smart contract and a evaluation report that details the
security level of the contract under review.

Overall, the process of static analysis for smart contracts development leve-
rages specialized tools and techniques to identify potential vulnerabilities in
the contract’s code, reviewing and confirming the findings, and generating a
report with recommendations for addressing any identified issues. This stage
of the process can help to improve the security and reliability of smart con-
tracts and ensure they operate within the functionality that is intended for
them.

Security Rating Certificate

The purpose of distributing a security rating certificate in the process of
developing a smart contract is to ensure the security of the contract. This
certificate is designed to provide evidence that the contract meets certain secu-
rity requirements, such as being resistant to malicious attacks, and is properly
configured to prevent unauthorized access. By distributing the certificate, it
helps to ensure that the contract is secure and can be trusted by users and
other entities interacting with it. By doing this, it helps to deter any potential
malicious users from taking advantage of the contract.

In the context for smart contract development, the report has two purpo-
ses in my architectural design for this security protocol. First, provide the

l Static Analysis ‘ /”—\

w
% Oyente
Figure 1: Architectural design for smart contract security model.

‘ Dynamic Analysis ‘

Architectural Design for Secure Smart Contract Development 127

developer with potential bugs in the code that are recommended to be fixed
prior to deployment. Then, provide the users that utilize the particular smart
contract of its potential risks.

Since data is immutable on blockchain, this information is essential to
gather before interacting with non-reversible, immutable data transmission
on the main network. The report can serve as a performance evaluation, as it
will alert the participating parties of what risks are evident in the smart con-
tract. one of the key features of being blockchain, a security rating certificate
can be distributed prior to deployment. Using the report that is generated
during the static analysis phase, a rating can be placed upon the security level
of the given smart contract. This rating can be combined with the smart con-
tract so that users on the blockchain can view this rating prior to leveraging
that smart contract.

Deployment

The deployment process for smart contracts involve the following steps: com-
piling the contract code, selecting a deployment network, creating and signing
a deployment transaction, and confirming the contract deployment.

When compiling the code for Ethereum smart contracts, a Solidity com-
piler is used to convert the contract code written in Solidity’s programming
language into bytecode that can be executed by the EVM. Once the code is
compiled, a deployment network has to be chosen. In practical cases, deve-
lopers would choose to directly deploy their code onto the main Ethereum
network, but there are other options in place, a private or test network. It
is encouraged that developers deploy to a test network at first to handle any
unforeseen issues in the code.

Next, when deploying to a network, the developer will need to create a
deployment transaction. Inside of the transaction, there will be the compiled
contract code and any additional arguments or parameters. Developers will
then need to sign and send the transaction. This is done by using the private
key of the account that is deploying the contract. The signed portion of the
transaction can then be compiled, by the EVM, with the code to ensure that
the correct developer is uploading the smart contract.

Finally, the contract is deployed and available for use for any participating
node on the network. By this process, developers will be required to run test
on their smart contracts before they are eligible to deploy on to the mainnet.
This will facilitate a reasonable standard as certain conditions will be required
before public use of participating nodes.

Dynamic Analysis

Dynamic analysis is a process used to evaluate the behavior of a smart con-
tract by executing it and observing its runtime behavior. This type of analysis
can help identify potential vulnerabilities and security flaws in the contract
code.

When identifying the inputs and outputs of the smart contract, it is impor-
tant to understand the input-output behavior of the smart contract. This can

128 Lewis

be accomplished by comparing the types of data that the contract can accept
as input and the types of values that the contract will output.

After conceptualizing the expected input-output behavior, test environ-
ments will need to be created when executing the contract. Again, in most
blockchain networks, there is an implemented testnet that is ran to simu-
late the execution of these contracts. Practically, local blockchain emulators
are essential but for Ethereum dynamic testing is done through the Rinkeby
testnet.

Next, the developer should create test cases for the smart contract to
gauge its functionality. Once the test environment is set up for the smart
contract, the developer should include test cases that can cover a wide range
of scenarios, involving normal and exception breaking samples.

Following the development of test cases, developers can run and observe
the results on the smart contract and how the blockchain will theoretically
react to these cases. This will allow the developer to understand the pitfalls of
the execution of their smart contract with dynamic information interacting
with the logical processes. Finally, the results can be analyzed to notice if
there are any potential issues with the behavior of the contract.

FUTURE WORKS

As with any complex software system, there is room for further development
and improvement in the field of smart contract development. Some likely
areas for future work: improved security, better debugging and testing tools,
more efficient and scalable execution, and enhanced interoperability.

Improved security is one of the major challenges in smart contract deve-
lopment. There is a lack of transitional methods to ensure the security of
contract code. Software security tools and practices are disjointed within the
software development cycle for smart contracts. Static and Dynamic analysis,
smart contract construction and deployment are not cohesive processes, but
more separate, individual parts that are can be used by the developer.

Another area for future works is in the development of more advanced
debugging and testing tools for smart contracts. These tools could provide
better support for tracking the execution of the contract, identifying poten-
tial issues, and more comprehensible testing of the contract in variety of
scenarios.

Also, as the popularity of blockchains grows, systems that leverage this par-
ticular component of blockchain will increase. This emphasizes the need for
more efficient and scalable ways to execute these contracts on the main netw-
ork of the blockchain. Future work can focus on developing new techniques
and technologies that analyze smart contracts in dynamic analysis for pros-
pective developers to improve the performance and scalability of the contract
post deployment.

Enhanced interoperability refers to the ability for smart con- tracts to affect
data on separate blockchain networks. This is a more advanced and futuri-
stic goal as protocols and standards will definitely need to be in place for
communication, data sharing and creation of tools for integrating contracts
from different platforms.

Architectural Design for Secure Smart Contract Development 129

In regards to the proposed security protocol, it is designed to address the
major gaps in current security evaluation techniques for smart contract deve-
lopment. It provides a comprehensive and automated security audit to ensure
the security of the contract and a blockchain-based security platform to pro-
tect against malicious actors. Additionally, the protocol can be used to create
more efficient and cost-effective security evaluation techniques for smart con-
tract development. By using the protocol, users can be confident that their
contracts are secure and can be trusted by other entities interacting with it by
having a structured process of smart contract security evaluations.

To improve my design for future implementation, I could explore new tools
and techniques for ensuring the security of smart contracts. As [am exploring
these alternative tools, I can compare, quantitatively, the results from each
tool to find the most optimal route for smart contract development. Along-
side comparing security tools for smart contracts, blockchain platforms will
have to be evaluated themselves at some point. The security of the decen-
tralized network plays a major role security of the smart contract or any
other types of application built upon the network. The open source nature
of blockchain platforms and the applications on these networks can cause
the developers to be at a disadvantage when trying to secure their applica-
tions against hackers. Exploring blockchains that are not as public with the
information as Ethereum will be important, but potential challenges can be
raised as blockchain platforms are still relatively new and not every network
has a designated programming language to develop applications. Also, explo-
ring automated security audits and blockchain- based security platforms can
be an extension of this work. Additionally, I could look into ways to make
the protocol more efficient and cost-effective, such as using machine learning
techniques to identify potential vulnerabilities quicker. Finally, I can investi-
gate ways to make the protocol more user-friendly and accessible, such as by
providing detailed documentation and tutorials.

CONCLUSION

The purpose of my paper is to contribute a conceptual security protocol
for future development purposes for blockchain frameworks. By identifying
common software vulnerabilities in the smart contract stage of the blockchain
application development and leveraging evaluation tools found in research,
a conceptual protocol can be constructed. The protocol can ensure a level of
integrity for smart contract usage on the blockchain.

The problem within current literature is that each component discussed in
the methodology section is modular and disjointed. I theorized a conceptual
model of organizing the different components that are already in literature
involving smart contract construction, static and dynamic analysis, smart
contract deployment, and further monitoring of the contract while on the
main network of the platform. My findings can provide the basis for con-
structing more complex and robust processes to collectively evaluate these
contracts. Also, my work can lead to defining a standard for these smart
contracts operating on these blockchain.

130 Lewis

Additionally, researchers can develop new tools or techniques for detecting
and mitigating security vulnerabilities. My solution was to create protocol
that can fit the vast majority of current security tools and techniques to eva-
luate the majority of smart contracts. For some, this work can spark an idea
to implement a more novel process with its own tools for static and dynamic
analysis.

Finally, a future suggestion would be to investigate the potential for appl-
ying these principles to blockchain platforms outside of Ethereum. I am aware
that different blockchains will leverage different static and dynamic analysis
tools, but research possible ways to converge these methods into a singular
process that can applicable for multiple blockchain platforms.

REFERENCES

A. Lopez Vivar, A. T. Castedo, A. L. Sandoval Orozco, and L. J. Garc ’1a Villalba,
“An analysis of smart contracts security threats along- side existing solutions,”
Entropy, vol. 22, no. 2, p. 203, 2020.

A. Vacca, A. Di Sorbo, C. A. Visaggio, and G. Canfora, “A systematic literature
review of blockchain and smart contract development: Tech- niques, tools, and
open challenges,” Journal of Systems and Software, vol. 174, p. 110891, 2021.

G. Chen, B. Xu, M. Lu, and N.-S. Chen, “Exploring blockchain technology and its
potential applications for education,” Smart Learning Environments, vol. 5, no.
1, pp. 1-10, 2018.

H. Chen, M. Pendleton, L. Njilla, and S. Xu,” A survey on ethereum systems security:
Vulnerabilities, attacks, and defenses,” ACM Computing Surveys (CSUR), vol. 53,
no. 3, pp. 1-43, 2020.

I. Garfatta, K. Klai, W. Gaaloul, and M. Graiet, “A survey on formal verifica-
tion for solidity smart contracts,” in 2021 Australasian Computer Science Week
Multiconference, 2021, pp. 1-10.

K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier, N.
Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote, N. Swamy et al., “Formal
verification of smart contracts: Short paper,” in Proceedings of the 2016 ACM
workshop on programming languages and analysis for security, 2016, pp. 91-96.

L. Luu, D. H. Chu, H. Olickel, P. Saxena, and A. Hobor,”Making smart contracts
smarter, in Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, 2016, pp. 254-269.

M. Wohrer and U. Zdun, “Smart contracts: security patterns in the ethereum ecosy-
stem and solidity,” in 2018 International Workshop on Blockchain Oriented
Software Engineering (IWBOSE). IEEE, 2018, pp. 2-8.

N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks onethereum smart contra-
cts (sok),” in International conference on principles of security and trust. Springer,
2017, pp. 164-186.

P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and M. Vecheyv,
“Securify: Practical security analysis of smart contracts,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security,
2018, pp. 67 82.

R. Gupta, S. Tanwar, E. Al-Turjman, P. Italiya, A. Nauman, and S. W. Kim, “Smart
contract privacy protection using ai in cyber-physical systems: tools, techniques
and challenges,” IEEE access, vol. 8, pp. 24 746-24 772, 2020.

S. Aggarwal and N. Kumar, “Attacks on blockchain,” in Advances in Computers.
Elsevier, 2021, vol. 121, pp. 399-410.

Architectural Design for Secure Smart Contract Development 131

S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, andH.-N. Lee,”Systematic review of
security vulnerabilities in ethereum blockchain smart contract,” IEEE Access,
2022.

S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and
Y. Alexandrov, “Smartcheck: Static analysis of ethereum smart contracts,” in
Proceedings of the 1st International Workshop on Emerging Trends in Software
Engineering for Blockchain, 2018, pp. 9-16.

	Architectural Design for Secure Smart Contract Development
	INTRODUCTION
	Types of Analysis
	Types of Attacks

	RELATED WORKS
	Smart Contract Security
	Software Security Design
	Blockchain Security

	METHODOLOGY
	Constructing Smart Contracts
	Static Analysis
	Security Rating Certificate
	Deployment
	Dynamic Analysis

	FUTURE WORKS
	CONCLUSION

