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ABSTRACT

Cyber-attacks, an intentional effort to steal information or interrupt the network, are
growing dramatically. It is of great importance to understand how an adversary’s beh-
avior might impact the detection of threats. Prior research in adversarial cybersecurity
has investigated the effect of different honeypot variations on adversarial decisions
in a deception-based game experimentally. However, it is unknown how different
honeypot variation affects adversarial decisions using cognitive models. The primary
objective of this research is to develop the cognitive model using Instance-based
learning theory (IBLT) to make predictions for decisions for networks with different
honeypot proportions. The experimental study involved the use of a deception game
(DG): small, medium, and large. The DG is defined as DG (n, k, γ ), where n is the
number of servers, k is the number of honeypots, and γ is the number of probes that
the opponent makes before attacking the network. The DG had three between-subject
conditions, which denoted three different honeypot proportions. Human data in the
experimental study was collected by recruiting 60 participants who were randomly
assigned one of the three between-subject conditions of the deception game (N = 20
per condition). The results revealed with an increase in the proportion of honeypots,
the honeypot and no-attack actions increased significantly. Next, we built two Instance-
based Learning (IBL) models, an IBL model with calibrated parameters (IBL-calibrated)
and an IBL model with ACT-R parameters (IBL-ACT-R), to account for human decisions
in conditions involving different honeypot proportions in a deception-based security
game. It was found that both IBL-calibrated and IBL-ACT-R models were able to account
for human behavior across different experimental conditions. In addition, results reve-
aled a greater reliance on the recent and frequent occurrence of events among the
human participants. We highlight the key importance of our research for the field of
cognitive modelling.

Keywords: Honeypot, Cybersecurity, Cyber deception, Deception game, Adversary, Defender,
Instance based learning theory (IBLT)

INTRODUCTION

The extensive reliance on the Internet has led to massive usage of digital
infrastructure and online services (Luxner, 2021). Because of the expansion
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of digital infrastructure and services, cyberattacks have become more pre-
valent (Jeffery & Ramachandran, 2021). Modern cyberattacks are complex
and hazardous, necessitating the development of robust solutions to combat
them. Though there exist solutions to combat some of these cyberatta-
cks, these solutions may not help in completely rescuing from modern
cyberattacks (Katakwar et al., 2020; Shang, 2018).

Previously, there have been some solutions that have been applied and
demonstrated to be effective in the real world to defend against these threate-
ning cyberattacks. Some of them include Intrusion Detection Systems (IDS),
filtering strategy, and deception (Aggarwal & Dutt, 2020; Scarfone & Mell,
2007; Shang, 2018). IDS monitors network traffic and generates warnings
when suspicious activity is detected. These systems have proven to be impe-
rvious to modern cyberattacks; however, they may generate false alarms,
resulting in significant monetary loss. Filtering strategy aids in the removal of
malicious content from the network, enabling secure access to the network
(Shang, 2018). Another technique that has proven to be useful in combating
cutting-edge cyberattacks is deception (Katakwar et al., 2020).

Deception with honeypots in the cybersecurity domain has shown to be a
useful tool in countering emerging cyberattacks (Aggarwal, Gonzalez & Dutt,
2016a; 2016b; Aggarwal et al., 2017; Katakwar et al., 2020). Prior research
developed a tool called HackIT, where HackIT could simulate a cyber-attack
situation by incorporating concepts from behavioural game theory (Agga-
rwal & Dutt, 2020). HackIT was able to replicate real-world cyber-attack
scenarios and it was helpful for developing an understanding of the human
factors that may influence adversarial decisions in a complex environment. In
HackIT, Aggarwal et al. (2020) manipulated the timing of deception as early
and late and found that late deception is effective compared to early dece-
ption for luring the attackers towards honeypots. Overall, HackIT was able
to replicate results about human decisions in canonical games. Deception has
been investigated via both mathematical and canonical games in the cyber-
security domain (Carroll & Grosu, 2009; Garg & Grosu, 2007; Kiekintveld
et al., 2015). Garg and Grosu (2007) developed a mathematical framework
for a deception-based security game. Carroll and Grosu (2009) modeled the
interaction between an adversary and a defender as a signaling game. How-
ever, both investigations by Garg and Grosu (2007) and Carroll and Grosu
(2009) applied Nash analyses of adversaries versus defenders without relying
upon human participants as adversaries or defenders.

Recent research in cybersecurity domain has focused on understanding the
impact of a number of cyber technology factors on human decisions in the
various cyber situations (Aggarwal et al., 2020; Katakwar et al., 2020, 2022a,
2022b). Some of these factors include the network size and the timing of dece-
ption as playing a significant role in affecting adversarial decision-making.
For example, Katakwar et al. (2020) investigated how different network
sizes influenced the adversarial decisions in the presence of honeypots in a
deception-based security game. Similarly, Aggarwal et al. (2016b) investi-
gated the timing of deception and found that the proportion of honeypot
attacks were greater for late deception compared to early deception. One



134 Katakwar et al.

of the key technology factors that could be investigated next is the propor-
tion of honeypots present in the network. This factor is important because
honeypots have traditionally been used as a tool to lure adversaries into a
trap (Píbil et al. 2012). In fact, Píbil et al. (2012) showed that choosing the
optimal number of honeypots in the network may help in misguiding the
attacker away from the real systems. Though some preliminary research has
focused on the honeypot proportion factor in human experiments recently
(Katakwar et al., 2022b), computational cognitive models that investigate
the reasons for human decisions against different honeypot proportions are
yet to be built. In this research, we address this literature gap by building
computational cognitive models that would account for human decisions in
situations that vary in the proportion of honeypots in the network.

First, we briefly describe a deception-based game. Next, we discuss the
experiment where we investigated how human adversarial decisions are influ-
enced by the proportion of honeypots in the deception game. Thereafter,
we report an analysis of human data collected in the experiment. Further-
more, we present the results from computational cognitive models, where
these models try to account for human decisions in the experiment. Lastly, we
discuss the implications of the developed cognitive models in the real world.

Deception Game

Deception Game (DG) is a sequential, single-player, and incomplete infor-
mation game between the network and the adversary (Aggarwal, Gonzalez
& Dutt, 2017; Garg & Grosu, 2007). The game is denoted using the fol-
lowing notation, DG (n, k, γ ), where n refers to the size of the network, k
denotes the number of honeypots in the network, and γ depicts the num-
ber of probes before making the final decision to attack the network. The
DG had two kinds of webservers, regular and honeypot. Regular webservers
were the real systems; whereas the honeypot webservers were the fake web-
servers that mimicked the real webservers. DG had multiple rounds, with
each round consisting of probe phase followed by attack phase. In the probe
phase, the adversary may probe one of the webservers present in the network.
In DG, probing a webserver meant clicking the button present on the DG’s
interface, which represented a webserver in the network. On probing a web-
server, the adversary received feedback from the network based on its action.
If a particular round had deception present in it, then the adversary recei-
ved the incorrect information. However, if the deception was not present in a
particular round, then the adversary received the correct information about
the webservers. In the attack phase of DG, the adversary had the option to
attack one of the webservers of the network. In DG, attacking the network
meant clicking one of the buttons denoting the webserver present in the DG’s
interface. Once the adversary completed a round, the adversary received the
scores based on her actions of probe and attack phases for a particular round.
Likewise, on completion of multiple rounds, the adversary received the cumu-
lative score for her actions. Table 1 denotes the payoff for each action in
the probe and the attack stages of DG. The DG was configured as DG (20,
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Table 1. Payoffs for different actions in the probe and attack
stages.

Stage Adversary’s action Payoff

Regular webserver probe +5

Probe
Honeypot webserver probe −5
No webserver probe 0

Regular webserver attack +10

Attack
Honeypot webserver attack −10
No webserver attack 0

5, 5), DG (20, 10, 10), and DG (20, 15, 15) for small, medium, and large
conditions, respectively.

Experiment

Experiment Design
The experiment contained three different between-subjects conditions with
different honeypot proportions. These conditions were: small, medium, and
large. In small condition, 25% of the webservers were honeypot webservers
in the network. In medium condition, 50% of the webservers were honeypot
webservers in the network. Similarly, in the large condition, 75% of the web-
servers were honeypot webservers in the network. In each of these conditions,
the number of webservers was kept constant at 20. So, DG was configured
as DG (20, 5, 5) for small, DG (20, 10, 10) for medium, and DG (20, 15, 15)
for large, respectively. The number of probes was kept identical to number
of honeypots, so that adversary got adequate chances to probe the honey-
pots to gain insights of the network. All three conditions had 29 trials: 14
trials had deception, while the remaining 15 trials had no deception. The
presence of deception and non-deception trials was randomized once and
this randomized order was kept the same for all participant across all condi-
tions. Participants were not aware of the presence of deception in a round in
the DG. For each round across all the conditions, the honeypot and regular
webservers were assigned randomly to buttons on the game’s interface.

Participants
This study was conducted after approval of the Ethics Committee at the
Indian Institute of Technology Mandi with written consent from all partici-
pants. Sixty human participants were recruited via Amazon Mechanical Turk
(Mason & Suri, 2012). Eighty-two percent of the participants were males,
while the rest of the participants were females. The age of the participants
ranged between 18 years and 64 years (median = 29 years, mean = 30 years,
and standard deviation = 6 years). Ninety-five percent of participants had
a college degree, while the rest were still pursuing a college degree. Around
63% of the participants were from the Science, Technology, Engineering, and
Mathematics (STEM) background. Participants were paid INR 50 (USD 0.7)
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after the study for participation. The top three scorers of the game were cho-
sen for the lucky draw contest, and one of these participants was randomly
selected for a gift voucher of INR 500 (USD 7.14).

Procedure
In the experiment, participants were instructed about their roles and goal
in the DG. In addition, participants were also informed about their actions
and payoffs associated with their actions. Participants were asked to increase
their payoff as much as possible over the multiple rounds of DG. Partici-
pants were told through text instructions about the presence of deception
and non-deception rounds in DG; however, they did not know which rounds
had deception and non-deception present in them. Also, in each round, con-
figuration of regular and honeypot webservers was randomized such that
proportion of regular and honeypot webservers was kept according to the
conditions. Each round of DG had two phases: probe and attack. In probe
stage, the adversary may probe a few webservers or may not probe any of
them and proceed ahead. Similarly, in the attack phase, the adversary had the
option to attack one of the webservers or she may not attack any of them.
Once the study was completed, participants were thanked and paid for their
participation.

Results

Influence of Different Honeypot Proportions During the Probe Stage
We analyzed the different probe decisions in different conditions with varied
honeypot proportions in the DG. The different conditions with the variation
in honeypot proportions significantly influenced the regular probe (F (2, 59)
=121.438, p <.001, η2 = .810), honeypot probe (F (2, 59)= 11.329, p <.001,
η2 = .284), and no webserver probe (F (2, 59) = 4.953, p <.05, η2 = .148).
Figure 1 shows the different proportion of probe decisions (regular probe,
honeypot probe, no webserver probe) across the conditions with different
honeypot proportions.

As per Figure 1, the proportion of honeypot webserver probe in small,
medium, and large conditions were 0.24, 0.42, 0.50, respectively. Since the
sample size was kept constant across all three conditions, we performed the
Tukey post hoc test. As per the Tukey post hoc test, the proportion of honey-
pot webserver probes in small condition was significantly smaller compared
to that of medium condition (p <.05) and large condition (p <.001). In addi-
tion, there was no significant difference between the proportion of honeypot
webserver probes in medium and large conditions (p = 0.32). Similarly, the
proportion of regular probes in small, medium and large conditions were
0.73, 0.40, and 0.19, respectively. As per the results from the Tukey post
hoc tests, the proportion of regular probes in the large condition was smaller
compared to that of the medium (p <.001) and large (p <.001) condition.
Likewise, the proportion of no webserver probes in small, medium, and
large conditions were 0.03, 0.18, and 0.31, respectively. As per Tukey post
hoc tests, the proportion of no webserver probe was significantly smaller
compared to that of medium and large condition.
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Figure 1: Proportion of probe decisions across DG with different honeypot proportions.
The error bar denotes the 95% confidence interval around the estimate.

Influence of Different Honeypot Proportions During the Attack Stage
Similarly, we analyzed the different attack decisions in DG with different
honeypot proportions. The different conditions of DG significantly influe-
nced the regular attack (F (2, 59) =103.115, p <.001, η2 = .783), honeypot
attack (F (2, 59) = 21.808, p <.001, η2 = .433), and no webserver attack
(F (2, 59) = 3.294, p <.05, η2 = .104) decisions. Figure 2 shows the pro-
portion of different attack decisions across three different conditions of
DG.

As per Figure 2, the proportion of honeypot attack decisions in small,
medium, and large conditions were 0.27, 0.44, and 0.61, respectively. Since

Figure 2: Proportion of different attack decisions across DG with different honeypot
proportions. The error bar denotes the 95% confidence interval.
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the sample size was kept constant across all the conditions, so we perfor-
med Tukey’s post hoc test. As per Tukey’s post hoc test, the proportion of
honeypot attack decisions in small condition was smaller compared to the
proportion of honeypot attack decisions in medium and large conditions. In
addition, there was a larger difference between the proportion of honeypot
attack decisions in the small and large conditions, and there was a smaller dif-
ference between the small and medium conditions. Similarly, the proportion
of regular attack decisions in small, medium, and large conditions were 0.71,
0.45, and 0.18, respectively. As per Tukey’s post hoc test, the proportion of
regular attack decisions was smaller in the large conditions compared to the
medium and large conditions. Also, there was a larger difference between the
proportion of regular attack decisions in the small and large conditions and
a smaller difference between the proportion of regular attack decisions in
the small and medium conditions. Likewise, the proportion of no webserver
attack decisions in small, medium, and large conditions were 0.02, 0.11, and
0.21, respectively. As per Tukey’s post hoc test, the proportion of no web-
server attacks in the small condition was significantly smaller compared to
the large condition. In addition, there was no difference between the propor-
tion of no webserver attacks in the small and the medium conditions. Also,
there was no significant difference between the proportions of no webserver
attacks in the medium and large conditions.

The IBL Model

Instance-based learning theory, a theory of decisions from experience for the
complex situations. Prior research in computational modeling via cognitive
theories such as IBL has been proven to be useful in predicting human beh-
avior in complicated circumstances. In an IBL model (Gonzalez et al., 2003;
Gonzalez & Dutt, 2011, 2012; Dutt & Gonzalez, 2012; Dutt et al., 2013),
the instances are built in the memory for each occurrence of an outcome on
choice options. An instance in the model has the following triplet structure:
situation-decision-utility. The situation in the instance denotes the current
situation, the decision depicts to the decision made in the current situation,
and utility is the outcome obtained for decision made in the current situation.
When a decision is to be made, the instances of each option are recalled from
the memory. Thereafter, for each option, these instances are then blended.
The blended value of an option is computed by the activation of instances
as well as their probability of being recalled from the memory. The blended
value of an option j in any trial t is defined as:

vj,t =
n∑
i=1

pi,j,txi,j,t

where pi,j,t is the probability of recalling an instance i for an option j in the
tth trial of experiment; xi,j,t is refers to the utility value of an instance i for an
option j in the trial t. The model in each trial chooses the option having the
maximum blended value. The above equation computes the blended value for
each option which is calculated as the sum of all observed outcomes weighted
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by the probability of their retrieval. The probability of the retrieval is defined
as

pi,j =
e
Ai,j,t

τ∑n
i=1 e

Ai,j,t
τ

where Ai,j,t denotes the activation value of an instance i corresponding to the
choice j present in the memory; τ is the random noise, which is defined as
τ = σ * 2 and σ is the free cognitive noise parameter to represent the uncer-
tainty of retrieving the prior experiences from the memory. The activation
value of the instance in a given trial is a determined by the frequency with
which its outcome occurs and the time difference between current time and
the past time when the instance’s outcome occurred in a task. For each trial
t, activation value of an instance i is defined as:

Ai = In

 ∑
tp,i∈1,...t−1

(t − tp,i)−d

+ σ ∗ In(
1− γi,t

γi,t
)

where, σ and d are the free parameters known as memory decay and cogni-
tive noise respectively; t is the current trial; tp,i are the prior trials in which
outcome with instance i occurred in the task; and γ i,t is the random number
chosen from the uniform distribution between 0 and 1. So, the frequency of
occurrence of outcomes in the task and the recency of those outcome obse-
rvations increase the activation of an instance corresponding to the observed
outcome. The decay parameter d accounts for dependency in the recent infor-
mation. The higher the value of the d parameter, the greater the reliance
on recent information, and the faster is the decay of memory. The σ para-
meter accounts for the variation in activation of instance from sample to
sample. The instance structure in the model consisted of the webserver deci-
sion, ground truth, and utility value associated with it. The webserver in the
instance denoted the webserver number the adversary probed or attacked in
the deception game. The ground truth depicted the kind of webserver, i.e.,
regular and honeypot, the adversary probed or attacked. The third attribute
of the instance was the utility value. The utility value was the reward corre-
sponding to the adversary’s decision and the ground truth. The model was
fed with human decisions and feedback for the probe phase.

Calibration of Model Parameters

We considered two versions of the IBL model. The first version of IBL model
had calibrated parameters of d and σ , which was referred as IBL-calibrated.
The second version of the IBL model had the default values of ACT-R for
the d and σ parameters as 0.25 and 0.50, respectively, called the IBL-ACT-
R model. In IBL-calibrated model, we found the best values of d and σ
using the human data of experiment for a different proportion of honey-
pots. Twenty model participants were run in the IBL model across different
trials. For different honeypot proportion conditions, we had a different
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set of d and σ values. In this model, we tried to minimize the sum of
Mean Squared Deviations (MSD) on proportion of attack decisions (regular
attack, honeypot attack, not attack) between human and model across the
29 trials.

MSD =
1

29

29∑
t=1

(modelt − humant)2

where, t refers to the trail from 1 to 29; modelt and humant refers to the
attack decisions (regular webserver attack, honeypot webserver attack, or no
webserver attack) in the trial t from model and human participants, respecti-
vely. For all the three attack decisions, MSD value was calculated. Thereafter,
the three MSD values for three kind of attacks (regular webserver attack,
honeypot webserver attack, and no webserver attack) were summed, which
was referred to as total MSD. So, if the value of the total MSD was small,
then better is the model’s fit to human data. Genetic Algorithm, an optimi-
zation algorithm, was used to optimize the values of d and σ parameters
for both the model participants. This optimization algorithm makes use of
bio-inspired operators such as mutation, crossover, and selection to build
better solutions for optimization problems. The utility value for the regu-
lar webserver, honeypot webserver and no probe/attack in the pre-populated
instances were varied in the range from −100 to 100 in the genetic algori-
thm, whereas d and σ parameters were varied in the range from 0 to 10. The
ranges of the parameter guaranteed that the optimization could confiden-
tly capture the optimal values of both parameters. The values of crossover
and mutation rates in the genetic algorithm were set at 80% and 1%, respe-
ctively. The IBL-ACT-R model was built upon the ACT-R theory, a theory of
cognition that has been accounted for various phenomena of cognitive science
(Anderson, Matessa & Lebiere, 1997). The IBL-ACT-R model here refers to
an agent that is less reliant on recent information, frequency, and variability
in decision-making. In IBL-ACT-R model, default values of d and σ were 0.50
and 0.25, respectively. Smaller values of d show less reliant on frequency and
recency of information, and smaller values of σ indicate smaller variability in
trial-to-trial decisions. We did a performance comparison between both the
models.

Model Results

Table 2 shows the values of free parameters and MSD between human and
model for different conditions of both models. The d and σ are the free para-
meters of the models where d parameter denotes the decay of the memory and
σ denotes the variation in the trial-to-trial decisions. In the IBL-calibrated
model, d value was maximum for large condition (d = 8.40) and mini-
mum for small condition (d = 1.75). Similarly, σ value was maximum for
the medium condition (σ = 8.48) and minimum for the large condition
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Table 2. Model parameters, MSD across different conditions for the IBL-calibrated
model and the IBL-ACT-R model, and utility value of the pre-populated insta-
nces of regular webserver, honeypot webserver, and no actions.

Condition Model d σ Utility value for dif-
ferent actions

MSD for different
attack actions

Total
MSD (Sum
of MSDs)

Regular
webserver

Honeypot
webserver

No
action

Regular
web-
server

Honeypot
webse-
rver

No
web-
server
Attack

Small Calibrated
Model

1.75 3.26 −13.82 86.29 −18.27 0.001 0.013 0.012 0.026

ACT-R
Model

0.50 0.25 −13.82 86.29 −18.27 0.030 0.029 0.002 0.061

Medium Calibrated
Model

3.36 8.48 −69.16 1.10 −8.66 0.016 0.017 0.006 0.039

ACT-R
Model

0.50 0.25 −69.16 1.10 −8.66 0.038 0.035 0.015 0.088

Large Calibrated
Model

8.40 0.67 −70.44 2.63 −5.93 0.006 0.013 0.011 0.030

ACT-R
Model

0.50 0.25 −70.44 2.63 −5.93 0.026 0.031 0.027 0.084

(σ = 0.67). The total MSD value for the three attack actions of the IBL-
ACT-R model across all the conditions were higher compared to the total
MSD value of the calibrated model.

Figure 3 shows the proportion of the regular webserver attack, honeypot
webserver attack, no webserver attack decisions across the different conditi-
ons with variation in honeypot proportions of DG in the calibrated model.
Figure 4 shows the proportion of regular webserver attack, honeypot webse-
rver attack, no webserver attack across the different conditions with different
honeypot proportions in DG in the IBL-ACT-R model.

Figure 3: Proportion of different attack actions across the different conditions of DG in
the IBL-calibrated model.
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Figure 4: Proportion of different attack actions across different conditions of DG in the
IBL-ACT-R model.

DISCUSSION AND CONCLUSION

With the increase in cyberattacks, there has been a need for a tough solution
to combat the cyber-attacks. Deception via honeypot has been proven to be
an effective technique to defend against modern cyber-attacks (Aggarwal &
Dutt, 2020; Katakwar et al., 2020). Prior research in this field has developed
and used abstract games to understand the role of deception in cybersecu-
rity. However, research is yet to develop a computational cognitive model
that will account for human decisions in cyber situation where the propor-
tion of honeypot webservers in the network are varied. When there was an
increase in the proportion of honeypot webserver probes, we found an incre-
ase in the no webserver probe and honeypot probe actions and a decrease in
the regular probe actions. Similarly, in the attack stage, with the increase in
the proportion of honeypot webservers in the network, there was an incre-
ase in not-attack and honeypot attack actions and decreased regular attack
actions. These results can be explained with the help of cognitive theories
like IBLT. As per IBLT, people choose those options that maximize blended
values. The increase in the proportion of honeypot webservers in the netw-
ork increases the likelihood of probing/attacking the honeypot webservers.
However, on probing/attacking the honeypot webservers, the adversary gets
awarded with negative points, which increases the instances with losses in
the memory compared to instances with gains. This influences the adversa-
rial decision-making and provokes him to avoid risk by probing/attacking the
webservers, leading to an increase in no-probe and not-attack actions. Next,
we calibrated an IBL model to the human data collected in the experiment.
The calibrated model revealed the reliance on the recent information and the
frequency of occurrence among the human participants. As the proportion
of honeypot webservers increased, we found an increase in the decay value.
This demonstrated that participants were more dependent on the recently
available information. Hence, we see a decrease in regular webserver attacks
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and an increase in honeypot webserver attacks on increasing the honeypot
proportions. In addition, we found the utility values of prepopulated insta-
nces of regular webserver probe/attack, and no webserver probe/attack were
negative; however, it was positive for honeypot webserver probe/attack. This
indicated that the increasing proportion of honeypots coupled with the prese-
nce of deception perhaps prompted participants to value honeypots more as
servers to attack. Furthermore, we also found that participants showed less
cognitive noise in their decisions when honeypot proportions were small or
large compared to the conditions with 50% of the webservers as honeypots.
One likely reason for this finding could be that smaller and larger number of
honeypots provided participants consistent environments; whereas, the 50%
honeypot condition made participants puzzled due to unexpected network
responses. One support for this reasoning is that we see a nearly equal pro-
portion of regular and honeypot attacks in the medium condition. However,
in the other conditions (i.e., small and large conditions), the adversary had
a clear understanding of the different kinds of webserver in the network. As
a result, we see more regular and honeypot attacks in the small and large
conditions, respectively. As our research was lab-based experiment, it has
some constraints, and the findings of the study should be regarded in that
context. The conditions or situations in the real world may differ from a lab-
based experiment. Also, the participant acting as the hacker did not have the
knowledge about deception and non-deception rounds of the DG. Moreo-
ver, they did not have the knowledge about the kind of webserver present.
We tried our best to replicate the real-world scenario in our experiment. So,
some of the results from this research are likely to have applications in the real
world. One application of the model developed is that it could be used to per-
form penetration testing of the networks involving honeypots to determine
exploitable vulnerabilities. Furthermore, the developed model can help cyber-
security organizations to build decision support systems for inexperienced
defenders or cyber analysts to decrease cyberattacks. In the future, we would
investigate how varying proportions of deception and non-deception rounds
affect adversarial decision-making in DG. Furthermore, we would investi-
gate the influence of different combinations of deception and non-deception
rounds on adversarial decisions in the DG. Another option would be to inve-
stigate the effectiveness of deceptive technologies against various kinds of
cyberattacks against networks. These are some of the ideas we would like to
explore deeper in our upcoming studies.
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