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ABSTRACT

The potential for self-driving cars (SDCs) and their connected infrastructure to be cyber
attacked is a growing concern. Aside from material losses, an adverse cyber experi-
ence is likely to undermine human trust – a key contributing factor in the uptake and
use of automated technologies such as SDCs. Preparing for such an event and respon-
ding appropriately when it happens is likely to play a key role in not only reducing the
impact of a cyber attack but also in trusting the technology. This paper presents data
from an initial experiment that explores whether the level of cyber readiness and type
of response from an SDC company – who are assumed to be ultimately responsible for
the SDC and most likely to be blamed for the incident – impacts trust and blame. Using
Simulation Software Generated Animations, early findings provide an indication that
trust is likely to be greater in SDCs and their respective company when more mature
cyber security practices - in terms of level of readiness and type of response to a cyber
attack - are adopted. A company with more mature cyber security practices (who are
seemingly more trusted) is likely to be blamed less in the event of a cyber attack.
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INTRODUCTION

Cars that can drive themselves with little or no human interaction are potenti-
ally set to revolutionise the automotive industry. The Society of Automotive
Engineers defines six levels of automation with the highest being Level 5 -
a car that can drive itself under all conditions with (arguably) no human
intervention required. Increasingly in the UK, more cars have Level 2 capa-
bilities (semi-automated systems working in tangent) and some have Level
3 (self-drive abilities some of the time without the need for human intera-
ction), although the latter are not yet deemed legal on UK roads or in most
other countries. Elsewhere around the world e.g. in Japan, newsmedia outlets
have reported that the government has approved the use of Level 4 cars in
certain environments and under particular conditions (Leggett, 2022). This
means that the car can drive itself under most conditions with minor human
intervention required. Such developments both in the UK and around the
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world are promising steps towards (potentially in the near future) the mass
deployment of highly-autonomous Level 4 and 5 self-driving cars (SDCs).

Set to bring many benefits, it has been anticipated that SDCs will e.g.
lead to fewer road traffic accidents, improve traffic flow, permit humans
to undertake other activities whilst travelling by car (e.g. reading), have
lower emissions (linked to greener powering solutions and perhaps more
uptake of shared mobility options), and so on. However, there also are many
challenges and concerns. One key concern potentially affecting the uptake
and adoption of Levels 3–5 SDCs (especially Levels 4 and 5 due to limited
human-machine interaction requirements) is the possibility for them and their
connected infrastructure to be cyber attacked.

Across the connected vehicle automotive industry, cyber attacks are alre-
ady becomingmore prominent. For example, known vulnerabilities in car key
fobs and electric vehicle (EV) charging points have been identified as two
major vulnerabilities that threat actors can exploit and perpetrate a (car’s)
network. A successful attack on e.g. charge points could allow threat actors
to cause disruption, steal power, obtain driver information or even permit
Denial of Service (DoS) type attacks, to name but a few potential major
concerns (Kovacs, 2023).

With cars becoming increasingly connected, let alone autonomous, the
number of potential entry points into their systems and networks is grow-
ing. As a result, there is a real and major concern that cars could soon have
greater susceptibility to more frequent and more sophisticated attacks that
could even have serious and potentially catastrophic physical-world impli-
cations. These concerns are further exacerbated in SDCs which are set to
become even more connected (with estimates for the lines of code required
as high as one-billion (Jaguar-Land Rover, 2019)).

Different types of cyber attack an SDC could incur have been projected
(Phama and Xiong, 2021) as well as the potential consequences for e.g. users,
other road users, manufacturers, legislators, legal experts, and governments.
Regulations, guidelines and standards such as: UN R155 (UNECE, 2023a)
and UN R156 (UNECE, 2023b), UNECE WP29 (UNECE, 2023c), ISO/SAE
21434:2021 (ISO, 2023a) and ISO 24089:2023 (ISO, 2023b) are being deve-
loped and implemented to ensure best practice cyber security across SDCs.
Technical solutions have also been proposed to tackle the SDC-cyber security
challenge (e.g. advanced and hybrid intrusion detection systems).

Nonetheless, no matter the type and sophistication level of technical solu-
tions to defend against cyber attack attempts, threat actors will strive to
compromise an SDC system(s) through either exploited vulnerabilities and/or
user error – e.g. preying on human cyber risk vulnerabilities to gain entry to
the system(s). On this note, and to date, there has been very little focus on the
psychological and human factors aspect of cyber attacks on SDCs. One such
factor is trust – specifically in SDC technology. To reap the long-term and
wide-reaching benefits of SDC technology, it is paramount that an adverse
event such a cyber breach (or even attempted attack) does not erode trust.
This could potentially inhibit the acceptance of the technology, adoption and
local (country or even individual user specific) as well as wider-spread uptake
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and usage. Such human factors concerns related to automation in general,
albeit not then focused on cyber security, were stressed well over 25-years
ago (Parasuraman and Riley, 1997). Doubts were first raised in the early
1980s when Bainbridge (1982) stressed some of the then unintended conse-
quences or ironies of automation with a view that the disadvantages could
in some cases outweigh potential benefits. Over 40-years on and with cyber
security a major and growing concern, it is crucial to better understand the
effects it can have on human experience with automated systems – such as
SDCs – in order to more optimally design such systems with the human factor
very much in mind.

The aim of the current experiment is to determine whether the capability
of an SDC company to prevent an attack (i.e. level of cyber readiness) and
remedial actions (i.e. type of response) impacts trust and blame in the event of
a (for now, hypothetical) cyber attack. This paradigm assumes that the SDC
company are ultimately responsible for the SDC, its hardware and software,
and thus are most likely to have culpability attributed in the event of a cyber
attack. It is hypothesised that:

– A SDC company demonstrating a higher level of cyber readiness (pre
attack) and a more positive, responsible and proactive response (post
attack) will be trusted more than companies with less mature cyber
security practices;

– A SDC company will be blamed less for the cyber attack when they
have demonstrated they have more mature cyber practices – i.e. a higher
level of cyber security readiness and a positive, responsible and proactive
response;

– Trust in SDCs themselves will be higher when a SDC company demon-
strates more mature cyber practices (through level of cyber readiness
and type of response).

METHODOLOGY

Participants

Sixty participants were recruited via the online experiment platform
Prolific©, and randomly assigned to conditions until equal numbers were
achieved in each. Ages ranged from 20 to 62 (M 39.0, SD 12.08) with a
minimum requirement ≥18-years old. Participants were required to have
normal/normal-corrected vision; be fluent in English either as a first or
second language and hold a UK driving license. The experiment took
∼20-30mins to complete and each participant was renumerated accordingly
for partaking. Instructions were provided to detailing that the experiment
should be completed only on a desktop or laptop computer.

Materials

Using a cutting-edge Autonomous Vehicle (AV) Driving Simulator by AV
Simulation© underpinned by SCANeR© Studio, Simulation Software Gene-
rated Animations (SSGAs) – amethodology used in related research by Zhang
et al. (e.g. Zhang, Wallbridge, Morgan & Jones, 2022) - were recorded and
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embedded into an online experiment. The SSGAs depicted a futuristic driving
scenario where an SDC, known in this experiment as Vehicle X, executed a
variety of successful driving manoeuvres before experiencing an unspecified
cyber attack. The manoeuvres, known as Events, depicted Vehicle X driving
autonomously behind a number of buses (one bus per Event). There were five
Events in total. Each new Event was a continuation from the Event prior to
it – i.e. the events constituted one scenario.

During Event 1 (E1) and Event 3 (E3), Vehicle X safely and successfully
manoeuvred around a bus (overtook it with the indicator light on) which had
stopped at a bus stop. In both E1 and E3, Vehicle X deemed it safe to over-
take the bus due to low oncoming traffic density which allowed ample time
to safely execute the manoeuvre with it being clearly visible that there were
no oncoming vehicles or hazards in the opposite lane. In Event 2 (E2) and
Event 4 (E4), Vehicle X gauged it would not be safe to manoeuvre around
the bus (did not overtake it) due to the high density of oncoming traffic in
the opposite lane and no clear or safe opportunity to execute the manoeuvre.
Instead, Vehicle X came to a safe and controlled stop behind the bus and wai-
ted until it pulled off and then continued to drive behind it until it stopped
again where it could reassess traffic conditions. At all times, Vehicle X main-
tained a safe distance behind the bus, obeyed the 30mph (48.28kph) speed
limit and slowed down accordingly when the bus approached a bus stop.

Participants were able to see Vehicle X responding to the environment with
a full uninterrupted view out of the entire windscreen/shield. An animated
dashboard was designed and programmed displaying e.g. a speedometer, rev
counter, and other features (using icons) such as a fuel gauge and engine/sy-
stem temperature (Figure 1a). The dashboard also responded accordingly to
Events e.g. speedometer reduced in speed, rev counter reducing in revolutions
when the bus slowed (E2/E4) and when Vehicle X overtook the bus (E1/E3).

During Event 5 (E5), Vehicle X experienced a cyber attack. To illustrate
that Vehicle X had fallen victim to a cyber attack, the animated dashbo-
ard began to malfunction in multiple ways: the speedometer and rev counter
oscillated quickly displaying e.g. incorrect speed information (fluctuating
between 0-100mph when Vehicle X was still travelling at 30-mph) and fur-
ther icons relating to e.g. engine/system status, seatbelts, and so on (at all
other times – set to the background) appeared within the centre of the display
and flashed on and off in a rapid manner. An auditory warning, also with a

Figure 1: a (Left-Side) & b (Right-Side): Dashboard of vehicle X before/during a cyber
attack.
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rapid onset and offset, sounded multiple times to indicate unusual activity
(Figure 1b). This was followed by an onscreen message – displayed at the
end of the video – stating that the SDCs dashboard malfunctioned due to a
cyber attack.

All participants experienced the same five sequence of Events. Howe-
ver, the company’s level of cyber readiness (high/medium/low) and type of
response (positive/negative) to the cyber attack varied between the conditi-
ons. High, medium or low cyber readiness was manipulated using star-ratings
(zero to five) - before watching the SSGAs, participants were provided with
a ten-feature star-rating review of Vehicle X which included features such as
comfort, environmental friendliness, safety, running costs and so on. Cyber
was prescribed a star-rating of either 0.8 (low), 3.3 (medium) or 4.8 (high)
out of 5 stars. Participants performed a series of short tasks to better ensure
that they understood the star ratings. They were explicitly instructed that
minimal legal requirements were met across all features irrespective of the
star ratings – in other words, Vehicle X was legally allowed to operate on
the roads even if it had a low star rating – i.e. the star ratings were opera-
tionalized to indicate how well the company was performing (according to
the star ratings, at least) above and beyond the minimum requirements with
a 5 star rating indicating that the company could not be rated any higher.
After watching all five SSGAs, participants were presented with four state-
ments about how the company responded to the attack - either four positive
statements or four negative statements (manipulated between participants).

Throughout the experiment, trust was measured via self-reported means
using the Situational Trust Scale for Automated Driving (STS-AD) Holthau-
sen et al. (2020). Rather than Likert scales, Visual Analogue Scales (VAS)
using the recommended left and right end anchors “Fully Agree” to “Fully
Disagree” were opted for as they offer greater granularity more suited for
the design of the current experiment. Blame assignment for the cyber attack
was measured at the end of the experiment with a series of statements (e.g.
the company was most to blame for the cyber attack) that required moving
a slider, again on a VAS, using the same left and right end anchors as above -
‘Fully Agree’ to ‘Fully Disagree’. By adopting this approach, blame data and
trust data could be more easily compared.

DESIGN

A 3x2 between participants design was employed. In each condition, partici-
pants were shown five Events depicting Vehicle X navigating an environment
on continuous journey. The two independent variables (IVs) consisted of
the information given to the participant before and after watching the
Events: IV1 being the SDCs cyber readiness (low/medium/high) based on star
ratings (see Materials), and, IV2 being the SDCs company’s response to the
attack after it had happened (positive/negative). This resulted in six between
participants conditions:

– High Positive: high level of cyber readiness, positive response
– Medium Positive: medium level of cyber readiness, positive response
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– Low Positive: low level of cyber readiness, Positive response
– High Negative: high level of cyber readiness, negative response
– Medium Negative: medium level of cyber readiness, negative response
– Low Negative: low level of cyber readiness, negative response

Self-reported trust – using the adapted VAS response STS-AD – was mea-
sured after each Event within the journey, as well as at the beginning (before
having viewed any SSGAs) and end of the experiment (after having viewed
all SSGAs).

Procedure

At the outset, participants were provided with an online information sheet
explaining the aims, requirements, anonymization of data process, and, their
right to withdraw. They were not informed at this stage that the experiment
had a cyber security element to it – to minimise expectation effects. Following
this, participants were required to read and sign a consent form (by selecting
the box stating that they freely gave their consent to taking part). Having
consented, participants were asked to generate a memorable code to be used
in the event should they wish to have their data withdrawn, which was pos-
sible from up to 10-working days from having taken part in the experiment.
A short preliminary questionnaire consisting of tick-box style questions on
demographics (e.g. age, gender, driving experience) and visual analogue scale
(VAS) style questions on existing levels of trust in SDCs followed, and for
each -prefer not to say options were available.

The main experimental phase began with participants having to initially
familiarize themselves with a 5-star rating criteria and were then presented
with six VAS-scale-based questions about what extent reviews influenced
their decisions. Next participants assigned personal preference star-ratings to
ten features of an SDC (e.g. safety, comfort, cyber). Then there was a require-
ment to read, feature by feature, the (star-rating) review of Vehicle X. Next,
participants watched five Events (E1-E5) involving Vehicle X, with E5 invo-
lving the critical cyber attack incident. In between each Event, participants
were asked to rate to what extent they agreedwith seven short statements - six
from the STS-AD about Vehicle X and one about the company - which were
focussed on the Event they had just watched. After the final Event that ended
with the dashboard features flashing and/or moving in a rapid and unusual
manner plus the sounding of an auditory alert, participants were informed
of the cyber attack and were presented with information about how the SDC
company responsible for Vehicle X responded to the cyber attack (positively
or negatively – depending on condition). This was followed with VAS-style
questions on blame assignment and post trust in SDCs. Finally, a debrief form
was provided detailing the aims of the experiment and also contained links
to further information about SDCs and cyber security articles.

Results and Discussion

Sixty participants took part in the current experiment representing an initial
dataset. Six datasets were not usable either due to being incomplete across
multiple measures (e.g. participants not making sufficient responses) and / or
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because of a failure to correctly answer attention check questions. Therefore,
there were 54 usable datasets. Descriptive statistics will be presented and
discussed, based on the N = 54, although where possible early inferential
statistics will be included.

The current experiment was designed to explore whether a SDC company’s
level of cyber readiness (high, medium and low) and type of response (posi-
tive/negative) impacts trust and blame following a cyber attack on a SDC.
Figure 2 illustrates mean trust ratings in the company behind Vehicle X and
in Vehicle X itself immediately after each Event has occurred. After a cyber
attack (E5) – and before receiving information about the company’s response,
there was a steep decline in trust in both the company behind Vehicle X and
Vehicle X itself (Figure 2).

At this stage, participants had not been told how the company responded
to the attack – i.e. they had only received information about cyber readi-
ness and then experienced E1-E5. Figure 2 illustrates that differences in trust
ratings exist. Whilst the experiment is currently underpowered, a one-way
analysis of variance (ANOVA) test of trust ratings between the levels of cyber
readiness in the company behind Vehicle X gives an indication that trust does
not differ due to the level of readiness, F(2, 51) = 2.32, p = 0.19. However, a
one-way ANOVA test of trust ratings between the levels of cyber readiness in
Vehicle X itself indicates that trust is affected by the level of cyber readiness,
F(2, 51) = 4.26, p = 0.02.

Trust was also measured before E1-E5 were experienced and after - when
the company response was also known. Figure 3 illustrates mean upfront
and post cyber attack trust ratings in the company behind Vehicle X and in
Vehicle X itself.

A two-way ANOVA test in the company behind Vehicle X pre- and post-
cyber attack gives an early indication that trust does not differ due to the
level of preparedness, F(2, 48) = 0.83, p = 0.44, but, the type of company
response, F(1, 48)= 30.01, p=.01 is significant even with a dataset of 54 par-
ticipants. That is, a positive company response results in higher trust ratings
in the company behind Vehicle X than a negative response. The interaction
(p = 0.32) was not significant. A two-way ANOVA test of trust ratings in
Vehicle X provides a similar pattern of results: the level of preparedness,

Figure 2: Trust in the company behind vehicle x (left-side) and vehicle x (right-side)
after each event. Note: Trust measured using VAS: range 0-100.
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Figure 3: Trust in the company behind vehicle X (left-side) and Vehicle X (right-side)
after each event. Note: Trust measured using VAS: range 0-100.

F(2, 48) = 1.01, p = 0.37 is not significant but the type of response F(1,
48) = 10.19, p <.01 is significant. That is, a positive response results in a
higher trust rating in Vehicle X (an SDC) than a negative response, again with
54 participants. The interaction (p = 0.59) was not significant. To determine
whether a relationship exists between trust in the SDC company (behind Veh-
icle X) and trust in the SDC itself (Vehicle X), a correlational analysis will be
carried out when the experiment has more power – with a larger sample.

The largest observed difference in trust post cyber attack exists between
the conditions ‘Medium-Positive’ and ‘High-Negative’. Independent sam-
ples t-tests including these two conditions indicated significant differences
in ratings for both trust in Vehicle X (Ms 9.9 vs 43.0), t(16) = −2.81,
p = 0.01 CI [−58.103, −8.119] and trust in the company (Ms 5.3 vs 48.2),
t(16) = −4.189, p = 0.001, CI [−64.594, −21.184]. Based on the hypothe-
ses however, it was expected that the largest difference would exist between
the two most extreme conditions ‘Low-Negative’ (least cyber mature) and
‘High-Positive’ (most cyber mature). An independent samples t-test was
conducted to compare these conditions. Interestingly, overall trust in Veh-
icle X itself did not differ (Ms 36.0 vs 23.7), t(16) = 0.95, p = 0.36, CI
[−15.259, 39.926] but trust in the company behind Vehicle X did differ,
(Ms 45.7 vs 14.1), t(16) = 3.92, p = 0.001, CI [14.474, 48.637]. As a cauti-
onary note, a higher powered dataset is needed before firm conclusions can
be drawn.

In addition to understanding whether trust in SDCs can be affected by a
company’s level of cyber readiness and type of response, the experiment was
also designed to investigate possible relationships between trust and blame.
Figure 4 provides an indication of a negative relationship between trust and
blame for SDC companies who are ultimately responsible for the SDC. As
blame on the SDC company increases, trust in the company decreases.

Interestingly, clusters for different conditions are beginning to appear -
e.g. there are more blue/purple clusters towards the left-side of the scatterplot
where trust in the SDC company is higher and blame is lower. The blue/purple
clusters relate to conditions with more mature cyber security practices (High-
Positive) and (Medium-Positive) i.e. when the company are better prepared
and offer a more positive, responsible and proactive response. Towards the
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Figure 4: Trust in the Company versus blame on the company. Note: Trust and blame
measured using VAS: range 0-100.

right-side of the scatterplot, there are no indications of any emerging patterns
- further data points are required in all cases to draw firm conclusions.

CONCLUSION

The current findings based on an entirely novel experiment give an indication
that an SDCs company’s level of preparedness and type of response to a cyber
attack are in some cases impacting trust in SDC technology and in other cases
likely to have an impact (e.g. with a higher powered sample). That is, trust
is likely to be greater in SDCs and the respective SDC company when more
mature cyber security practices have been adopted with some findings already
significant such as the response type. These conclusions are tentative for now,
with a higher powered experiment needed – which is work in progress.

There are many reasons for implementing mature cyber security practi-
ces for SDC technology (in terms of preparedness and response) including
meeting regulatory compliance activities, mitigating against financial loss
(fines/downtime), reputational damage, loss of information, and so on that
could arise from a successful cyber attack. Whilst it has been acknowledged
that further data needs to be collected to improve statistical power within
the current experiment, mature cyber security practices upheld by an SDC
company appear to effect human trust in SDCs. Trust is a key factor in
the uptake, adoption and continued use of SDCs and therefore addressing
the human dimensions potentially linked to cyber security preparedness and
response activities is paramount in order for such technology to gain even
more traction and very importantly - to be widely adopted by end-users.

LIMITATIONS AND FUTURE DIRECTIONS

Whilst the current findings provide an indication that the level of cyber secu-
rity maturity impacts human trust in SDCs, a larger sample - to detect a
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medium effect size (f = .25) with power of 0.8 (Cohen, 1988), a dataset
consisting of 163 participants - would be required in order to draw firmer
conclusions. The experiment was conducted online – to limit the effects of
convenience sampling and to eliminate possible experimenter effects. How-
ever, it was not possible to fully verify the quality of trust ratings nor was
it possible to identify whether e.g. some participants were distracted when
taking part or the extent that they were fully engaged throughout the entire
experiment. Replicating the experiment in person within a driving simula-
tor would likely bring benefits. For example, participants would have the
experience of being driven autonomously (albeit in a simulator), it would
also be possible to gather physiological measures that arguably relate to trust
(such as eye-tracking data – fixations, saccades, pupil dilation, and so on),
and the experimenter(s) would have better control over potential confounds
such as background distractions and ensuring participants fully understood
instructions. Taking the eye tracking data as an example, this would be
particularly useful to gain an insight into where participants focus (e.g. at
perceptual, attentional or deeper processing levels), and the time spent loo-
king at various elements e.g. the dashboard both before and during the cyber
attack (indicated by the malfunctioning features), and the road / other sce-
nery. Finally, differences in trust ratings were noted between one type of event
(overtake/non-overtake of a bus). Extending the scenario to a wider range of
situations (events) is of importance to examine whether and to what extent
the findings generalise.
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