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ABSTRACT

In this paper we use an example of a search-and-rescue drone, used by mountain-
rescue teams, to illustrate our approach to develop mathematical models and use
them to verify behaviour that depends on human interactions with the drone. The
design and development of human-in-the-loop robotic systems, such as the search-
and-rescue drone, requires knowledge of their human, software, and hardware com-
ponents. The verification of these systems also requires knowledge of those same
three components. Through our example we demonstrate how we can develop sequ-
ence diagrams that capture use cases of interest for verification, based on an existing
Hierarchical Task Analysis. We discuss the notation for our sequence diagrams, which
is a variation of UML sequence diagrams tailored to capture time properties. It integra-
tes with other domain-specific models to provide a view of the system that includes
the software, the hardware, and human stakeholders, and can be used to generate a
mathematical model.
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INTRODUCTION

Verification of mobile and autonomous robotic systems has been a prevalent
research topic within the last decade. It is a practice currently being explored
in the field of Human-Robot Interaction to provide confidence in the cor-
rectness of a system. Robotic systems with humans in the loop offer more
opportunities for flexibility in the range of potential applications, but failure
can arise from human behaviours. Yet rigorous verification in this setting
is a challenge due to the complexity of human interactions. This is evident,
for instance, for an autonomous vehicle in which the human stakeholders
include passengers, other drivers, and pedestrians. Despite invested research
in this area, there is little available for the verification of robotic systems with
humans in the loop (Kress-Gazit et al., 2020).

To perform formal, mathematically founded, verification of a system inclu-
ding humans in the loop, the formal model of the system behaviour needs to
include a model of the expected human interactions (Bolton and Bass and
Siminiceanu, 2013). Whilst the data required for the generation of such a
model can be provided by evidence from the fields of Human-Computer
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Interaction, Psychology, Human-Robot Interaction or Human Factors, this
data needs to be gathered in a formal model for verification. Requiring pro-
fessionals with the knowledge of human behaviour to also have the expertise
on formal verification required to create these models is unrealistic.

In this paper, we present a notation that is usable by various stakehol-
ders in the robotic development lifecycle, including human factors engineers
and roboticists. The notation is based upon sequence diagrams as they are
a widely used, intuitive, and human-readable way to capture and communi-
cate expected human behaviour (Al-Fedaghi, 2021). Moreover, it is possible
to automatically generate mathematical models for formal verification from
sequence diagrams written using our notation in order to prove properties of
interest.

Here we illustrate our notation through its application in a search-and-
rescue drone. The next section provides further detail on the drone case study.
This is followed by a section giving an overview of our notation, justifying
its design based on the user studies we have carried out, the case study as
depicted in the notation, and its mathematical semantics. The verification
of a key property of the search-and-rescue drone is outlined and discussed.
Finally, we compare our approach to that of leading tools for modelling and
verification of human-in-the-loop robotic systems, namely Circus (Martinie,
2022), Ivy (Campos, 2022), and PVSio-web (Masci and Oladimeji, 2022).

CASE STUDY

The search-and-rescue (SAR) drone used as a case study is derived from cur-
rent practices used by mountain-rescue teams in the Brecon Beacons. These
practices, documented through onsite industrial research (Hart et al., 2020),
depict the use of a drone and handheld interface to find a missing person
through the execution of search patterns dependent upon the terrain in which
the person disappeared.

A Hierarchical Task Analysis (HTA) has been generated for this case study.
The HTA has been extended to include time constraints and expectations on
tasks in the form of minimum andmaximumwait times and action times. The
HTA documents the tasks undertaken by the SAR team from the notification
of a missing person through to the finding of said person using the SAR drone.

In-keeping with the Civil Aviation Authority regulations for the drone to be
within line of sight during operation (Civil Aviation Authority, 2019), there
are two humans present during the drone’s flight. The pilot directs the drone
during manual flight, using a handheld controller, and visually monitors the
drone during automated flight. The observer monitors the drone’s video feed
for any sighting of the missing person, signalling to the pilot when to halt the
search.

Software Model

Modelling of the SAR software has been undertaken in RoboChart, a robotics
modelling notation with mathematical foundations for use in formal verifi-
cation (Miyazawa et al., 2019). Figure 1 shows both the SAR drone and both
handheld controllers as a single robotic platform element, with user inputs,
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Figure 1: Robotic platform, interfaces and types for the RoboChart model.

‘takePicture’, modelled as RoboChart events (denoted by lightning bolts) and
system operations, ‘photo()’, modelled as RoboChart operations (an O).

The robotic platform, named SAR_Platform, indicates whether the plat-
form takes interfaces as inputs (i) or provides (P) system operations for use.
The input events are connected to system controllers via a module, where
each controller has at least one state machine outlining the system execution.
These state machines depict how the input events trigger execution resulting
in operations being actioned. For example, the ‘recordVideo’ event in the
‘VideoUI’ interface is connected in the SAR Software module to the ‘Vide-
oController’ which in turn is connected to the ‘VideoStateMachine’. Within
the ‘VideoStateMachine’, the ‘recordVideo’ event triggers the actioning of the
‘videoFeed()’ operation through the ‘VideoOutput’ interface. This operation
is only actioned on the condition that both the Handhelds and Drone are
on, determined by the triggering of the ‘powerDrone’ and ‘powerHandheld’
events in the ‘SystemUI’ interface.

NOTATION

This section first covers the requirements of our notation, followed by
demonstrating its use in the SAR case study.

Requirements

With the goal of identifying requirements for a modelling and verification
notation specific for tele-operated robotic and autonomous systems, we
have conducted a series of semi-structured interviews on existing approaches
to including humans-in-the-loop in the development process. Participants
(n = 14) were a variety of professionals working at various stages in the deve-
lopment cycle of a robotic system. These professionals work in roles including
human factors engineer, UX designer, software engineer, researcher and tech-
nical director. The participants work at companies across sectors such as
nuclear, defence, aerospace, maritime, manufacturing, lab automation, and
the automotive industry. All participants were based in the UK and other
Western European countries.
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Reports from these 8.5 hours of interviews span the spectrum from not
considering human behaviour during design through to a fully specified
process to identify and explore all possible points of human interaction
within the system. Twenty-three tools, including Doors and Enterprise Arch-
itect, were referenced and 12 standards, such as ISO, mentioned during the
interviews. Alongside these, 19 design methods, like user stories and prototy-
ping, and 14 key “human behaviours”, boredom being one, were identified
through qualitative analysis of the interviews.

Our main conclusions are that processes used for tele-operated robotic
system design, and the skills of those executing these processes, vary widely
between companies and sectors. As such, any notation defined would need
to be flexible and intuitive. In addition, to meet the requirement to support
verification, it needs to be a precise and tractable notation.

Notation Syntax

To ensure familiarity for users, we use a restricted UML sequence diagram
notation enhanced to support modelling of human-centred systems. The
notation is rich enough to express the kinds of properties we are interested
in but can be given a mathematical semantics that is tractable. Distincti-
vely, there are also additional constructs, wait and deadline, allowing for
the description of time budgets and deadlines on interactions from human
users.

To perform verification of system properties, we need to connect our
sequence diagrams to the RoboChart diagram modelling the software and
identifying robotic-platform requirements. The RoboChart model is platform
independent, but as mentioned, defines the services used by the softw-
are. Some of these may be means to support human interactions: a simple
example is an on/off button represented by an input event in RoboChart,
like ‘powerHandheld’. Such services need to be reflected in the sequence
diagrams.

Being platform-independent, the RoboChart model abstracts the structure
of the platform. For human-centred problems, however, the method that
humans use to interact with the platform may play an important role in the
clarification and understanding of the system execution. In the case of the
SAR example, the platform is comprised of the drone and the handheld. Both
need to be considered in our sequence diagram to improve the readability of
the system flow.

When using our sequence diagram notation, there must be lifelines for
every piece of hardware the user can interact with, both in the form of inter-
faces and physical robotic devices, for each of the human users, and one to
represent the world. Figure 2 shows five actors and their associated lifelines,
vertical parallel lines down which the ordering of actions can be specified,
within the SAR example. These actors are differentiated via their symbols as
either human (man icon), device (robot icon), interface (controller icon), or
world (globe icon).

In this example, the ‘Observer’ and ‘Pilot’ actors are of type ‘Human’ while
the ‘Handheld’ actor is of type ‘Interface’ and ‘Drone’ is of type ‘Device’. The
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Figure 2: Subsection of the SAR case study for displaying notation constructs.

‘World’ actor represents anything outside of the system itself upon which the
system may depend, such as external software. What the ‘World’ actor is
depicting, at any given time, can be indicated through the use of comments; in
the example, ‘UAV Flight Control Software’ is introduced as a comment. This
form of construction has no effect on the diagram semantics, but improves
readability.

As with UML, interactions between actors are modelled as arrows in the
direction the message is sent. For example, the pilot telling the drone to fol-
low the flight plan, defined in variable ‘searchType’ of type ‘SearchType’,
is modelled as an arrow from the ‘Pilot’ lifeline to the ‘Handheld’ lifeline
with the message ‘FollowFlightPlan(searchType)’. This message is linked to
the capabilities of the actors through an associated capabilities-and-variables
document. An example of this can be seen in Figure 3 where the ‘Follo-
wFlightPlan: SearchType -> Handheld’ capability is attached to the ‘Pilot’
as the initiator of the capability. This capability has an argument of type
‘SearchType’ and is output from the Pilot to the Handheld. Messages are
considered instant, unless indicated otherwise through a wait.

The new wait construct can be used to model a time budget for the com-
pletion of actions induced by the messages. The lifeline upon which the wait
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Figure 3: Example capabilities-and-variables document for the SAR case study.

is placed indicates the actor requires the specified time to complete the prior
action. The TimeUnit to be used is defined alongside the capabilities decla-
ration with possible values such as seconds, minutes and hours. In the SAR
example, the message ‘TurnOnHandheldController’ is followed by a wait
construct of ‘wait([90, 150])’ to indicate that the ‘Pilot’ actor can take a
minimum of 90 time units and a maximum of 150 time units to complete
their part in the actioning of ‘TurnOnHandheldController’. If the wait was
for a specific time period, for example 90 time units, it could be added in
the form ‘wait(90)’; it is unusual, however, for time budgets to be specific.
The approach ‘wait([minTime, maxTime])’ can be used, in place of defini-
tive values, where ‘minTime’ and ‘maxTime’ are defined as constants of type
integer alongside the time unit declaration. The assignation of values to these
constants being optional allows for the creation of the model prior to having
knowledge of timings.

Human decision making, such as the ‘AreControlsResponsive’ capability
on the ‘Pilot’ lifeline in Figure 2, is modelled through an arrow from the ‘Pilot’
lifeline to itself. These capabilities set the value of a variable of type boolean
using theMessage?variable structure. This means that the variable can be set
with either a true or false value, and in this example said value is then used
for the condition to determine different branches of the system execution.

Conditions, situations in which the sequence of actions may follow
multiple branches, can be modelled through UML alt constructs attached
to variable values. Use of this construct is shown in Figure 2 as a box
around actions under the condition ‘responsive==true’ which, as stated
above, is linked to the previous message, ‘AreControlsResponsive’, on the
‘Pilot’ lifeline in which the ‘responsive’ variable is assigned a value. The
alt construct is associated with an else element that is shown through the
‘searchType==Area Search’ section of the flight plan alt box and is separa-
ted from the ‘searchType==RapidParallelLine’ search sequence path with a
dotted line. In the case of multiple possible conditions, more than one else
element can be added to the alt construct.
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Loops are used to encompass sets of messages that should be repeated, such
as the method for undertaking an area search that requires the drone flying
to each point in a list of coordinates while the ‘Pilot’ monitors its progress.
For further tractability within our notation, constraints can be placed upon
loop constructs. A constraint is visible in Figure 2 as ‘(at most 10 times)’ on
the ‘Area Search’ loop. This prevents the loop from exceeding ten executions
but indicates that there could be a case for the loop to exit prior to this, such
as the missing person being found.

Messages sent between ‘Human’ actors and ‘Interface’ or ‘Device’ actors
are connected to the RoboChart model through their capability definitions in
the capabilities-and-variables document, either as input events or operation
outputs. We can prove properties of the system dependent upon these capabi-
lities, however for the ‘World’ actor we can only prove properties about time
taken as we do not expand upon how the ‘World’ executes its capabilities.
As stated previously, the ‘World’ lifeline represents anything with which the
system interacts that exists outside of the system itself, ie. the scope of the
model.

VERIFICATION

Verification is a technique used to prove that a system design and behavi-
our meet the requirements (Luckcuck et al., 2019). There are many forms
of verification including formal verification, simulation, and testing. Formal
verification is a tried and tested method to improve confidence in the corre-
ctness of a system. Due to its application during design time, this confidence
can be gained prior to the investing of time and resources into system deve-
lopment. Formal verification provides mathematical proof artefacts that can
be used in safety-case development (Butterworth, 1998). This verification
technique, however, requires formal models of system behaviour and formal
models of the properties to be proved.

For illustration of our work, this section defines a property of our case
study that we will prove supports proof through formal verification. The
semantics for our notation is briefly discussed prior to the property being
proved.

Property of Interest

A property of the SAR drone derived from existing system expectations is:
The drone should begin searching within ten minutes of being turned on.

This property depends upon the hardware and software of the drone, the
hardware and software of the handheld controller, the scenario in which the
drone is flying, the pilot who is operating the drone, and the observer moni-
toring the video feed. These elements are defined in the sequence diagram,
Figure 4, and the RoboChart model, Figure 1, and as such both are required
to prove this property.

Semantics

To perform formal verification, any model defined needs to be translated into
a verifiable format such as CSP (Woodcock et al., 2009). The semantics are
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Figure 4: Subsection of the SAR functionality upon which the property of interest
depends, with ellipses representing hidden events.

the mathematical backbone of the notation allowing for such a translation
to take place.

Both RoboChart and our sequence-diagram based notation have their own
defined semantics in CSP. These semantics can be integrated and the conju-
nction of the two models, expressed through parallel composition, provides
the definition of the system for use in formal verification.

Proving the Property

The generated CSP for the RoboChart SAR software model, and the hand-
written CSP for the sequence-diagram based notation model, have been
combined into a single process named SYSTEM. The property of interest has
also been encoded in CSP. With these encodings, we can use FDR (Ábrahám
and Havelund, 2014), a tool for CSP, to prove the property fully automati-
cally. Future work will generate the semantics of the sequence diagram and
the SYSTEM process automatically.

SpecP1 specifies the execution of three events, PreparePlanForGround-
Searchers, powerHandheld and powerDrone, before entering a deadline
constraint, as seen in Figure 5. This constraint states that after a powerDrone
event, within the space of 600 seconds, an initSearchCall event must occur
preceded by any combination of other events specified within a set ALL.
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Figure 5: The specification and assertion for the property of interest in CSP.

Finally, once initSearch is called with any SearchType as an argument, the
terminate event should be observed.

The assertion, on line 6 of Figure 5, checks that the property, SpecP1, traces
refines the SYSTEMprocess. Traces refinement checks that each possible path
through SYSTEM is contained within those defined by SpecP1. In this case,
the assertion passes meaning the property holds.

However, should the property have stated 300 seconds, then the assertion
would fail and FDR would display the counterexample. The refusals of the
counterexample displays the cases in which the assertion would fail. In this
case, the specification, SpecP1, does not allow time to proceed because a
deadline has been reached, however the system still allows for more time to
pass, therefore missing the deadline. Specifically, SpecP1 is expecting to see
an initSearchCall event, but SYSTEM is 74s into the execution of the event
TestControlsResponsive.

CONCLUSION

The approach and notation outlined in this paper is capable of proving
properties about robotic systems that rely upon human interaction. This is
demonstrated through the proof of a key property of our example. The system
execution is verified as always being completed within ten minutes, taking
into consideration both the wait times for human interaction defined in the
sequence diagram and the execution times of the software as defined within
the RoboChart model.

Through adapting the existing UML sequence diagram notation, we have
created a notation, which is understandable for various stakeholders in the
robotics development lifecycle, for the modelling of robotic systems with
humans in the loop upon which properties can be proved through formal
verification.

This approach differs from those employed by leading tools for modelling
and verifying human-in-the-loop robotic systems: Circus (Martinie, 2022),
Ivy (Campos, 2022), and PVSio-web (Masci and Oladimeji, 2022).

The HTA-like approach offered by Circus, in their HAMSTERS com-
ponent, is entirely graphical, providing an easy to use interface and clear
identification of user interactions. This approach does not have, however,
any mathematical foundations to support formal verification.

Unlike Circus, both Ivy and PVSio-web have the mathematical foundations
necessary for formal verification. IVY uses an action-logic textual notation
that requires specialist knowledge, thereby not satisfying the requirement of
a usable notation for non-roboticist stakeholders.
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PVSio-web is a prototyping tool in which prototypes can be connected to
PVSmodels defining the functionality of the system. This approach allows for
the gathering of user behaviour data through manual user testing on the pro-
totype. However, the models of the system functionality, which can include
user actions, require knowledge of PVS, or EmuCharts for simplified models,
to generate. As with IVY, this requires specialist knowledge.

In the future we will mechanise the semantics of this notation, automa-
ting the translation from our sequence-diagram notation to CSP.We will also
consider the use of sequence diagrams to specify properties of the system
(Windsor, 2022), in this way removing any need for knowledge of CSP by
the users.
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