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ABSTRACT

Improvements in neural methods have led to the unprecedented adoption of Artificial
Intelligence (Al) in domains previously limited to human experts. As these techno-
logies mature, especially in the area of neuro-symbolic intelligence, interest has
increased in artificial cognitive capabilities that would allow a system to function less
like an application and more like an interdependent teammate. Next-generation Al
systems need to support symbiotic, human-centered processes, including objective
alignment, trust calibration, common ground, and the ability to build complex work-
flows that manage risks due to resources such as time, environmental constraints,
and diverse computational settings from super computers to edge devices and auto-
nomous systems. In this paper we review current challenges in achieving Symbiotic
Intelligence and introduce solutions in the form of Artificial Executive Functions aimed
at solving these challenges. We present our work in the context of current literature
on self-aware computing and present basic building blocks of a novel, open-source,
Al architecture for Symbiotic Intelligence. Our methods have been demonstrated effe-
ctively in both simulated crisis and design problems and during the pandemic. We
argue our system meets the basic criteria outlined by DARPA and AFRL providing:
(1) introspection via graph-based reasoning to establish expectations for both auto-
nomous and team performance, to communicate expectations for interdependent
co-performance, capability, and understanding of shared goals; (2) adaptivity through
the use of automatic workflow generation using semantic labels to understand requi-
rements, constraints, and expectations; (3) self-healing capabilities using after-action
review (AAR) and co-training capabilities; (4) goal oriented reasoning via an awareness
of machine, human, and team responsibilities and goals; (5) approximate, risk-aware,
planning using a flexible workflow infrastructure with interchangeable units of compu-
tation capable of supporting both high fidelity, costly, reasoning suitable for traditional
data centers, as well as in-the-field reasoning with highly performable surrogate
models suitable for more constrained edge computing environments. Our framework
provides unique symbiotic reasoning to support crisis response, allowing fast, flexi-
ble, analysis pipelines that can be responsive to changing resource and risk conditions
in the field. We discuss the theory behind our methods, practical concerns, and our
experimental results that provide evidence of their efficacy, especially in crisis decision
making.
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AT and machine learning enabled systems have become a ubiquitous part of
modern life. Spurred initially by the DARPA PAL (Personalized Assistant
that Learns) and CALO (Cognitive Assistant that Learns and Organizes)
programs (Gouin, 2012) these Intelligent Software Assistants (ISAs) are
now standard on most smart phones, home assistants, intelligent thermo-
stats, and other home automation technologies. While these systems have
greatly enhanced the productivity of their users, they fall short of their
promises, delivering capabilities that are more focused on single intera-
ction workflows with their human co-performer, lacking truly interactive
capabilities.

We discuss a novel framework for constructing machine co-performers
(MCPs) with artificial cognitive capabilities designed to recreate key portions
of executive function believed vital for generating symbiotic Al, exten-
ding current capabilities beyond mere appliances or automated assistants,
and enabling truly interdependent workflows, generating MCPs that have
mission-based models to account for sense-of-self and theory-of-mind in
interdependent workflows.

« Sense-of-self — Self-aware computing was the subject of a DARPA work-
shop in 2004 (Amir, 2007). In humans self-awareness is a poorly
understood process relating to knowledge of one’s permanent aspects,
relationships to others, sensory experiences, beliefs, desires, intentions,
and goals. In computing the topic of self-awareness has generally been
discussed as self-monitoring, where a computer system monitors, eva-
luates, and intervenes on its internal processes in a purposeful way;
and self-explanation or metacognition where a system can accurately
recount and justify the actions and decisions it has made. In this paper
we focus on a mission-bound sense-of-self which enables self-monitoring
and explanatory behaviours associated with an explicit mission or pur-
pose for a human-machine team. In human-machine teaming we argue
that sense-of-self is important for interdependence, as it allows a mach-
ine co-performer (MCP) to act with similar self-understanding of its
actions and goals as a human teammate.

« Theory-of-mind — In addition to sense-of-self, an equally important
symbiotic property is theory-of-mind. In psychology, the notion of
theory-of-mind implies the existence of an explicit model of other co-
performers in an environment paired with the knowledge that those
co-performers have mental states; that these states may be different
from the state of the agent with theory-of-mind; allowing judgement and
inference on the mission-bounded behaviours of human co-performers.
While not outlined explicitly by DARPA in their discussion of self-aware
Al theory-of-mind, and other notions of machine awareness of the con-
texts, emotions, and goals of their co-performers is vital to achieving
symbiotic workflows (Saracco, 2021).

In their 2009 report (Agarwal, 2009) a set of desired capabilities for
so-called “Self-Aware AI” are presented consisting of five stated goals and
functionalities:
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1. Itis INTROSPECTIVE or SELF-AWARE in that it can observe itself
and optimize its bebavior to meet its goals.

2. It is ADAPTIVE in that it observes the application behavior and
adapts itself to optimize appropriate application metrics such as
performance, power, or fault tolerance.

3. It is SELF HEALING in that it constantly monitors its resources
for faults and takes corrective action as needed. Self-healing can be
viewed as an extremely important instance of self-awareness and
adaptivity.

4. It is GOAL ORIENTED in that it attempts to meet a user’s or
application’s goals while optimizing constraints of interest.

5. It is APPROXIMATE in that it uses the least amount of precision
to accomplish a given task. A self-aware computer can choose auto-
matically between a range of representations to optimize execution
— from analog, to single bits to 64-bit words, to floating point, to
multi-level logic.

We present a roadmap to achieving these core goals through the
development of Artificial Executive Function, along with our core framework
for enabling these functions in Al and machine learning systems. The so-
called executive functions of the human brain, sometimes referred to as
cognitive control, are a set of cognitive processes evident in the human brain
that allow individuals to understand and modulate their behaviors through
monitoring, the exercise of control, inhibition, and are built on underlying
substrates such as working memory. Current belief is that higher-order exe-
cutive functions are a requirement for planning, fluid intelligence, abstract
reasoning, and problem solving (Diamond, 2014). While there is some disa-
greement in the literature on the nature and exact taxonomy of executive
functions, recent research has somewhat clarified the confusion by demon-
strating the experimental separability of mental set shifting, information
update and monitoring, and inhibitory control (Miyake, 2000). In their paper
Miyake et al. were able to show that individuals with impaired executive
function development had measurable deficiencies in these areas that directly
impacted problem solving abilities.

Our framework enables artificial executive functions, achieving many of
DARPA’s goals for self-aware Al through its use of working memory that
stores a history of co-performance outcomes with individual human co-
performers, tracking expectations for co-performance generated using its
training data and prior records of engagements. The framework allows an
MCP to observe prior independent behavior, recorded joint behaviors and
team performance outcomes, and simulated autonomous action in similar
contexts to understand skill and objective gaps in the team’s co-performance
that were either corrected by the MCP intervening on human behaviors or
actions or corrected by the human intervening on the machine’s behaviors
and actions.

TRUST AND CO-TRAINING IN HUMAN-MACHINE TEAMS

In order to address increasing threats from adversaries, warfighters must be
partnered with intelligent systems capable of automating and augmenting
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human capabilities. Traditional models of these human-machine teams have
autonomous partners, and human partners train independently over the skills
needed to accomplish a task or mission. We argue that in order for these
teams to be truly interdependent it is necessary for them to co-train as well
as co-perform. The Air Force has long documented the advantages of co-
training for teams during co-performance situations (Stone, 1999). When
understanding how team composition impacts success or failure on goals
during co-performance, prior co-training was found to be among the most
influential for positive outcomes. Teams that train together tend to have bet-
ter calibrated trust in the skills and limitations presented by co-performers;
additionally, co-training seems to help humans develop an intuition as to
the cognitive flexibility of their partners, and the ability of their partners to
acquire new skills in the field. Co-training between humans and machines, we
theorize, not only helps to develop these capabilities in human co-performers,
but also provides Symbiotic Al with a chance to build models of their
co-performer’s intent, capabilities, and most importantly, their emotional
state.

Co-training in repeated exercises between human and machine partners,
during complex training scenarios that provide adequate models of antici-
pated missions, allows for the development of bi-directional trust between
the human and machine teammates. Once established, we use these models
to measure the emotional equity and outcomes from interdependent co-
performance and to establish, maintain, and repair trust with a human
co-performer. We argue that these interdependence relationships are the key
way that trust is established, maintained, and repaired amongst human per-
formers, and by providing a model of trust in this context, we can enable
more effective machine teammates, and exercises which establish appropriate
levels of trust in the human performer.

TRUST MODELING

When developing a relationship with a machine teammate, or other piece
of necessary technology, most human performers enter the relationship with
some level of inherent bias with respect to trust. This inherent bias is usu-
ally miscalibrated, resulting in under trust of the system, or over trust of the
system. While this initial bias is developed independently, and thus cannot be
controlled by a Symbiotic co-performer, this initial trust assessment can be
modified by the MCP as they co-train with their human counterparts. It is
a central thesis of ours that trust is not static (Feltovich, 2004), but can be
directly influenced through the experience gained by teaming with machine
counterparts.

MCPs built with our framework use a modified version of the Trust model
from (Akash, 2017) which was itself an extension from (Jonker et al. 1999,
Jonker et al. 2004). The MCP builds an expectation for the current trust cali-
bration based on its own expectations, and outcomes, and extends the signal
detection classification approach presented in (De Visser 2020), maintaining
a model of the current relationship equity, the current level of trust displa-
yed by the human (as estimated by behavioral, self-report, and economic bet
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measures from telemetry), and determines if its expectations of performance
represent a hit, false alarm, miss, or correct rejection, as in De Visser. We
extend the De Visser model by including expectations for co-training, and
engaging in similar emotionally vulnerable communication patterns during
After Action Review (AAR) not only about performance (to calibrate trust
in performance), but also about co-training improvements and future outco-
mes, communicating its goals in co-training, the outcomes, and how these
outcomes shift expectations for the MCP if capabilities improved, degraded,
or remained roughly equivalent, shown in Figure 1.

While in De Visser these classifications are used to characterize behavi-
our, we utilize our extended classification to set the mood state of the MCP,
indicating the understanding of the current trust process and the self-healing
adaptive action that is to be taken for correction. These mood states are used
to seed our After Action Review process, selecting the subjects to discuss, and
the lexical interventions to take with the human co-performer to modulate
trust into a more calibrated state.
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Figure 1: The MCP plans actions for trust calibration and co-training on the basis of
metacognitive analysis of prior performance, and its expectations for that performance
based on prior engagements and training. Based on those outcomes, it then establi-
shes a trust goal, and compares subject trust calibration signals to its goal to plan its
AAR engagement.

MODELS OF JOINT ACTIVITY

Joint activity between human and machine co-performers are modelled in our
framework using a formalism of human-readable box-diagrams that describe
a workflow beginning with the data sources available to the MCP, and ending
in the goal states the MCP is seeking to achieve as a sort of “blueprint” or
template for the joint activity. The MCP then may select functions from
its inventory of computational capabilities in order to seek to complete this
abstract workflow.

We provide automatic workflow generation through our open-source
ORCA framework (Cowger, 2022), producing models of joint activity that
are both actionable, and explicitly represent points of human-machine inter-
dependence, interaction, and models for activity and task coordination. The



166 Dey et al.

ORCA system is flexible in orchestrating tasks, and based on a container exe-
cution system (currently supporting Docker, Kubernetes, and other compati-
ble standards). This allows not only the orchestration of existing capabilities,
but the containerization and utilization of novel capabilities, including those
synthesized by the Symbiotic Al itself using surrogate modeling, or through
further training of its neural components.

The use of workflow execution allows our MCP to observe and opti-
mize its own behaviors through co-training and after-action review; adapting
its behavior to changes in the difficulty, mission and task complexity and
difficulty, as well as trust signals and capabilities displayed by its human
co-performers. The ORCA framework also enables self-healing capabilities
of our Al systems, applying co-training and trust calibration procedures
automatically in response to failures or gaps in performance. The system is
goal-oriented in nature, ORCA workflows are fully compatible with joint-
activity graph representations of interdependent activity (Johnson, 2021)
allowing the construction of workflows automatically from expectations and
inputs provided by the user. Individual tasks in the workflow can be repla-
ced with approximate reasoning through the Type 1 and Type 2 reasoning
(Evans, 2013) provided by our surrogate model generation functions. Com-
putationally expensive, solutions can be approximated with our own prior
work on Koopman theory methods using deep learning (Dey, 2022).

Figure 2a shows an example of the initial state of joint activity graph con-
struction in which the MCP receives information on its inputs and outputs in
the form of semantically labeled data cubes with annotations on constraints,
requirements, and expectations on the error and confidence of the outcomes;
an intermediate, partial, workflow graph is shown in Figure 2b. In this stage,
we show a partially constructed workflow graph in which the MCP has deci-
ded to attach a filter function to split its workload into three parallel paths,
and begin identification tasks, with the outcomes of these processes indicated
in the new graph, and then finally the completed joint activity graph. The
MCP constructs this graph in such a way to maximize its confidence in achi-
eving its tasks, while minimizing risk of failure from its inventory of existing
computational functions. Each function is modelled as a container with both
semantic and type labels on its input set, output set, and on the function itself
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Figure 2: Example of a partially assembled joint activity graph in ORCA. In (a) we see
the initial graph, defined by the initial input, and goal for the output. In (b) the MCP
has created a partial workflow, working to satisfy the subject’s request.



Leveraging Manifold Learning and Relationship Equity Management 167

which is used by the MCP to determine appropriate actions. Each container’s
semantic labels serve as expectations on the output from the function, and its
compatibility with other units of automated reasoning.

Figure 3 shows the final constructed joint activity graph with labels for
tasks that can be shared with the human co-performer and for which some
level of human feedback is anticipated. In this example the tasks deal directly
with the sensing of a contested airspace, and air mobility planning to avoid
loss of separation with intruders and aerostatic obstacles, while simultane-
ously attempting to achieve proximity to areas of interest in the environment.
Tasks 1-4 deal with Identification of Intruders, Intruder Loss of Separation
estimates, Balloon Loss of Separation estimates, and final mobility planning,
and can all be delegated to the MCP by a human, or accomplished by a
human directly. Both human and MCP tasks end in data cubes with the same
type signatures, making them directly compatible, though our prior work in
automatic work flow generation also means our ORCA framework is able
to adapt units, assumptions, and representational differences across different
users, if needed, in a real engagement.

These joint activity graphs can also readily be converted into fault-trees, as
shown in Figure 4, using an automatic algorithm. The MCP uses this capabi-
lity to conduct after action review, and to apply its metacognitive functions to
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Figure 3: A final joint activity graph constructed for the MCP and subject’s interdepen-
dent workflow. Tasks highlighted with arrows can be executed by either the MCP, or
human co-performer.
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Figure 4: ORCA workflows are not only compatible with joint activity graphs, they
can also be directly converted into fault trees for analysis, blame assignment, and
after-action review.
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determine co-training potential with its working memory. Before subsequent
performance, the MCP establishes expectations on:

« Individual performance - The MCP attempts to judge its own skill level
by looking at training and validation data, and then estimating its per-
formance outcomes, likely score, and ability to score while avoiding loss
of separation without a human co-performer. This sets a baseline for
expectations on performance.

. Joint performance - The MCP examines its working memory (part of its
nascent Artificial Executive Functions) for prior engagements (if any) with
the current user and establishes an expectation of joint performance, as
either better than, worse than, or roughly equivalent to its own individual
performance.

. Co-training outcomes for each of its functions - The MCP has an
understanding of diminishing returns in its own learning functions, and
establishes expectations on the result of co-training of any of its functions.

AFTER ACTION REVIEW AND MANIFOLD LEARNING

Simply being aware of its actions is not enough to meet DARPA’s stated
requirements for “self-aware AI”, nor is it a full exercise of the artificial exe-
cutive functions we have been developing. Equally important is the ability
to self-explain the actions, behaviors, and reasoning displayed by an MCP.
Our framework implements After Action Review (AAR) capabilities as a
communication tool between humans and machine co-performers. During
AAR, each team member is able to review the team’s joint performance and
discuss areas for improvement. This act of reflection facilitates trust transfer
and calibration, which are crucial to both the performance of the team and
the measurement of trust calibration. Foundational methods of communica-
tion gleaned from the domain of eXplainable AI (XAI) have been employed
to aid in the interpretability and explainability of the MCP’s reasoning and
decision making (Klein et al, 2021). Our methodology aims at minimizing
the explainability gap by utilizing natural language-like structures to explain
the AD’s performance based on past training experience in conjunction with
the relevant task. Unlike methods utilizing large-language models (LLMs)
(Bang, 2023), we take an approach of using templated dialogue that is popu-
lated by explanations from embedded manifold representations of decisions
and outcomes using Self Organizing Maps. Manifold learning enforces Eucli-
dean properties, while also performing dimensionality reduction, on complex
decision spaces.

As shown in Figure 5, our framework allows MCPs to embed its decisi-
ons in explainable manifolds, representing reasoning as a series of feature
planes important to an embedding. Explainable features from symbolic rea-
soning systems as well as latent features from neural reasoning systems can
be composed in these manifolds, which are then selected to minimize quanti-
zation, topographic, and classification error. The resulting embedding allows
the MCP to select the most relevant human decision features for a classifica-
tion, and to help human co-performers understand trade-offs in design and
decision spaces during after action review. Furthermore, remediative actions
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Figure 5: Manifold learning allows not only dimensionality reduction, but also explai-
nable feature extraction for perceptual alignment as shown in (a) and (b). Individual
feature maps can then be used to understand decision trade-offs (c, d) when compared
to commander’s intent.

from the human co-performer can likewise be embedded in the manifold,
allowing an MCP to store and adapt to semantically labeled criticisms from
its human performer.

CONCLUSION

In this paper we have presented a summary of novel functions for Symbiotic
Artificially Intelligent systems enabled by our framework, and their utility
in human-machine co-performance. During the coming months we will be
testing these functions and their coverage of artificial executive function in
human-subjects research to establish their efficacy for establishing, maintai-
ning, and repairing trust; and improving the capabilities of human-machine
teams to work effectively on interdependent tasks.
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