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ABSTRACT

Factor graphs with forward-backward probability propagation flows are used to model
interacting agents. Each agent follows an MDP (Markov Decision Process) on a graph
with the probability flow that is partially shared with the others. Each MDP bases its
decisions on current knowledge and future predictions about itself and of the oth-
ers, generating a complex time-varying scenario. The paper reports some preliminary
results on the use of the sum-product algorithm applied to the interacting multiple
agent model, where agents with individual destination goals move on a small rectan-
gular grid with obstacles that need to be avoided, thereby necessitating coordination
among the agents. Non-trivial solutions and behaviors are observed in the presence
of conflicting paths and objectives.
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INTRODUCTION

Studies in expert team decision-making demonstrate that effective teams
have shared goals and shared mental models to coordinate implicitly and/or
explicitly with minimal communication. They can establish trust through
cross-training, and are matched to the task structure through planning (Klein-
man et al., 1990; Cannon-Bowers et al., 1993; Blickensderfer et al., 2010;
Rico et al., 2008). The key questions then are the following: Do the best pra-
ctices of human teams translate to hybrid teams comprised of human and Al
agents or autonomous agents alone? Is there a mathematical framework for
systematically studying shared goals and shared mental models?

This paper proposes a factor graph-based mathematical framework for
studying multi-agent interaction in agile cooperative planning situations. We
find that one of the most promising avenues for modeling complex multi-
stage decision-making scenarios is to use stochastic approaches, where uncer-
tainties in the dynamic evolution of the environment and imperfect sensor
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observations are described using probabilistic models. Stochastic dynamic
programming provides a systematic methodology for modeling and solving
multiple interacting Markov Decision Processes (MDPs), wherein each agent
(MDP) has partial information about the other agents (MDPs) in the team
(Bertsekas, 2021). Each agent then acts by accounting for both its own obje-
ctives and the anticipated behaviors of others, as if they have a shared mental
model (Palmieri et al., 2022; Di Gennaro et al. 2022). Our model could
represent agent roles in a team and interdependencies of agent behaviors
in accomplishing team goals. Lack of consideration of team-level interde-
pendencies and overreliance on automation can result in fatal collisions, as
documented in National Transportation Safety Board reports (NTSB, 2022).

THE BAYESIAN MODEL

Figure 1 shows the conceptual model in which agents keep in their minds
both their own planning model and their best predictions of the others.

We have demonstrated in (Palmieri et al., 2022) that, using probabilistic
factor graphs (Palmieri, 2016; Di Gennaro et al., 2019), we can solve the
single-agent MDP stochastic control problems using message propagation
rules that subsume Dynamic Programming, Maximum likelihood, Maximum
entropy, and Free-energy-based methods. In this contribution, we show how
this framework can be extended to model multiple agents using interacting
factor graphs that exchange probability distributions among themselves.
Bertsekas (2021) has already considered Dynamic Programming for multi-
ple interacting systems, but our framework is more general in that it can be
adapted to various cost functions by simply changing some of the propaga-
tion rules (Palmieri et al. 2022). Figure 2 shows a section of our MDP factor
graph for a generic agent 7 at time ¢. Details about the blocks defined in the
picture can be found in (Palmieri et al., 2022), where the system evolution is
governed by conditional transition probabilities (bottom blocks). The prior
blocks that account for rewards, when translated into probabilities, inject
messages into the MDP graph to model constraints, such as obstacles, pre-
defined semantic areas (e.g., grassy areas, pathways) and goals. The evolution
of message propagation determines the decision an agent takes at time step
t, based on accumulated information coming from the future via backward
messages, propagated back in time from the terminal time T (T can be large).

Figure 1: Each agent keeps a running set of interacting models for itself and for the
others that extends from the present to a foreseeable future.
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Figure 2: A section of the factor graph for agent i. The bottom blocks are the conditional
transition probabilities. For more details, please refer to (Palmieri et al., 2022).

In a multi-agent scenario, there is a similar model for each agent with
possibly a different destination (goal) and a different reward structure. In
addition, the probability flow, unrolled in time, is shared with other agents.
Recall that, in belief networks, an outgoing message distribution is the “sum-
mary” of the information accumulated from the backward and the forward
flows. In other words, the outgoing messages are the posterior probabilities
of that agent to be in a certain position at a given future time. These are
complemented to one and injected into the other agents’ message flows. In
this way, each agent has a variable-constraint map in its flow that impacts its
behavior and that prevents collisions with the other agents. More importan-
tly, since this information is injected into the whole graph unrolled in time, it
is expected that predictions are used by each agent for making current deci-
sions that favorably impact the future. Indeed, the interdependence of team
member behavior to achieve team goals implies that “the performance of a
team is not decomposable to, or an aggregation of, individual performances”
(NAP, 2022).

SIMULATIONS

We have begun experimenting with this framework with a limited number of
interacting agents (three) on a small rectangular discrete grid with specified
starting points and destination goals for each agent, obstacles placed in vari-
ous positions, with narrow passages, small mazes, etc. The scheduling of the
agents is fixed a priori or may change over time, and the forward-backward
flow for each agent’s MDP is computed at every time step. In our first set
of experiments, we have assumed that all agents have complete knowledge
about goals and constraints of the others for the remaining planning horizon
[#, T]. Limitations in time, or imperfect knowledge of agents or of the envi-
ronment can be easily included in the model and are being explored in our
current work.

Figure 3 shows the results of an experiment with three agents on a small
8x8 grid with obstacles. Each agent can move to one of eight neighboring
positions or stay still. Each agent has its own goal (circles) and starts from a
different initial position.

Figure 3 shows the sequence of steps the agents take at different time fra-
mes. In this experiment, the time horizon T was set to 15 and the agents
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are scheduled in the sequence blue-violet-brown. Note that the brown agent
starts heading towards its goal, but, to avoid a potential conflict with the blue
agent in going through the same narrow passage way, decides to back up and
wait for the blue agent to pass by (Figure 3, =4 and ¢t=35), before heading
again for its goal (Figure 3, from #=6). The violet agent is so far from the oth-
ers that it never needs to interact with other agents in reaching its goal in just
one step. We would like to emphasize that the observed context-dependent
behavior is completely a consequence of the probability flow in the system.
No hand adjustments have been made.

Figure 4 shows the results of another experiment on a larger 16x16 grid
that includes a very narrow corridor where the agents may collide. The time
horizon T is 30 here and the agents are scheduled in the same sequence as
before: blue-violet-brown. Note how the violet and brown agents are heading
at the beginning towards their goals using the same narrow passage (Figure 4,
t=5 and t=6). Apparently, their predictions from the future have not been
able to tell them otherwise. However, as soon as the probability flow detects
a potential conflict two steps away, the brown agent backs up all the way to
the end (Figure 4, t=13), to let the violet agent pass by (Figure 4, t=11 and
t=13) and then heads to its goal (Figure 4, t=24 and t=28). The blue agent
has no interactions with the others in reaching its goal in just one step.

We have been experimenting with other scenarios and, even though our
results are preliminary, it appears that the solutions found by the probabilistic
model are quite striking. Complex strategies emerge naturally as a result of
the probability distributions that flow through the interacting flow graphs. In
(Di Gennaro et al., 2022), we have already presented a scheme in which the
agents follow their complete paths in a hierarchical order, where a unique
value function is pre-computed for every agent. In this contribution, even
if there is a scheduling order, the posterior probabilities flow freely in the
unrolled time model and are re-computed at every time step.

Figure 3: Simulation of three interacting agents on an 8x8 map. The pictures, to be
read in lexicographic order, correspondtot=0, 1, 2, 3, 4, 5, 7, 10 (start at upper left to
right in the first row and then from left to right in the second row).
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Figure 4: Simulation of three interacting agents on a 16x16 map. The pictures, to be
read in lexicographic order, correspondtot =0, 5, 6, 7, 11, 13, 24, 28.

CONCLUSION

In this short paper, we have presented preliminary results of a very promising
framework for handling multiple interacting agents with conflicting goals
and obstacles. The probability flow allows great flexibility in tuning the
information that each agent has on the others: it can span the whole range
that goes from complete knowledge of goals and positions about the oth-
ers, to a limited probabilistic awareness, both in precision and in time, of
where the other agents may be located at future time steps. We are pursuing
further work on this framework as it seems to allow systematic addressing
of questions, such as minimal amount of information needed for effective
team coordination in the face of changes in goals, communication bandw-
idth, grid parameters and agent status. We also plan to address the team fit
(congruence) hypothesis that maximal team performance, measured in terms
of speed and precision, accrues when team structures are congruent with the
task structure (Levchuk, 2004).
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