Human Factors in Software and Systems Engineering, Vol. 94, 2023, 86-94 AH FE
https://doi.org/10.54941/ahfe1003773 |nternational

Crowdsourcing for Second Language
Learning

Abdelrahman Abounegm, Magomed Magomedoyv,
Nursultan Askarbekuly, and Manuel Mazzara

Software Engineering Lab, Innopolis University, Tatarstan, 420500, Russian Federation

ABSTRACT

This work implements language acquisition and crowdsourcing techniques in a unique
combination to aid with second language learning. It allows users to contribute lingui-
stic assets, while other users vote on the quality of the assets. The system’s goal is to
provide a social platform for learning and contributing to underrepresented languages.
The authors establish quality attributes for the system, namely: usability, scalability,
security, and portability. The resulting system is tested against these quality attribu-
tes using quality scenarios and usability testing. The implemented system is shown
to possess the quality of security, scalability, and portability. Usability testing highli-
ghts the importance of user interface for crowdsourcing systems and shows possible
interface improvements.

Keywords: Empirical software engineering, Crowdsourcing, Language learning

INTRODUCTION

This work aims to utilize state-of-the-art crowdsourcing techniques in secon-
dary language learning, which can benefit from a distributed crowd of
volunteers and provide diversity and quality that would not otherwise be pos-
sible with a limited team of editors. This is especially important for minority
and endangered languages, which are absent from mainstream applications
and whose communities are eager to use opportunities to promote their heri-
tage (Finardi, Leao, & Amorim, 2016). This work proposes a software system
that will utilize the benefits of crowdsourcing for the purpose of second lan-
guage learning (Solemon, Ariffin, Din, & Anwar, 2013). It has the following
business goals: facilitate the crowdsourcing of linguistic assets through a
highly usable software tool, provide a gamified experience for users to learn
from the gathered assets, build an active community around the combina-
tion of crowdsourcing and gamified language learning, and gather linguistic
assets for a wide variety of languages. Following the requirements process
(Askarbekuly et al. 2021), we used the business goals to derive functionality
and metrics to quantify the extent to which the project succeeded in attaining
its targets. The methodology is a creative crowdsourcing solution that accepts
contributions from anyone in any language and uses the learner’s feedback
to automatically rate these contributions and award high quality ones. The
discussion and conclusion are proposed, stating limitations of the research,
possible future improvements, and the significance of the results.

© 2023. Published by AHFE Open Access. All rights reserved. 86


https://doi.org/10.54941/ahfe1003773

Crowdsourcing for Second Language Learning 87

RELATED WORK

Crowdsourcing is a growing field of research that aims to advance the field
by filling the gaps and initiating new potential directions. Recent research
(Wang, Duy, Hoang, & Kan, 2010) groups crowdsourcing systems into three
genres: Mechanical Turk, Games with a Purpose (GWAP), and Wisdom of
the Crowds (WotC). To test the tendency, we develop a hybrid web-backed
mobile application that attempts to fuse GWAP and WotC, taking fun and
usability from the former and amplifying them with recognition and speci-
alization of the latter. In terms of model, a crowdsourcing system can be
competitive or marketplace, depending on the interaction between a task
requester and provider. Observable prospects include reduced costs, subsequ-
ent diversification of the crowd via an opening of new markets, and the ability
to select qualified participants through their previous results on the crowd-
sourcing marketplaces (Wang, Bohus, Kamar, & Horvitz, 2012). The research
concludes by discussing a set of future challenges.

Language Learning

Language learning strategies include cognitive, memory-related, compen-
satory, affective, social, and acquisition-learning theories (Oxford, 2001).
Cognitive strategies focus on directly consuming language material, while
memory-related strategies focus on memorizing and compensatory strategies
focus on compensating for missing knowledge. Affective strategies focus on
the emotional side of the learner, while social strategies focus on interacting
with other learners or native speakers.

Acquisition-learning theories include Stephen Krashen’s five hypotheses
(Krashen, Principles and practice in second language acquisition, 1982):

« Acquisition-learning: Acquisition is a subconscious process, while learning
involves actively studying the language and its grammar rules.

« Monitor: learners pay attention to what they say, editing and correcting
themselves, assuming they know the rules and have studied the language.

« Input: for language acquisition to take place, the learner must be expo-
sed to input that is one level higher than their current stage of language
competence

. Affective filter: a person’s emotional state plays a big role in their language
acquisition.

. Natural order: there is a natural order for learning grammatical structures
of a language, independent of the learner’s age.

Krashen stipulates that acquisition is more important than learning, moni-
toring is important, and over-using the monitor can hinder acquisition.

The theory of statistical learning states that learners use statistical pro-
perties of any linguistic input to recognize patterns in the language and
generalize them to previously unseen inputs (Sembok, Abuata, & Bakar,
2011). Words can have different meaning depending on how they are used
in a sentence. When learning a language, it is important to learn words in
the contexts in which they appear. This can be done through stories written
in the target language, which add the benefit of learning about the customs



88 Abounegm et al.

and traditions of the people whose language one is learning (Mixon & Temu,
2006). Using stories and dialogues to learn a language engages both emoti-
ons and cognitive abilities, helping students identify the patterns present in
the language (Lampariello, 2020). This method has seen numerous applica-
tions, and several authors have published books, YouTube videos, as well as
podcasts employing the method of stories to teach languages.

METHODOLOGY

Crowdsourcing mechanisms to language learning require a proper design and
methodology to achieve the best possible outcome, guaranteeing all business
goals.

Architecture Derivation

The method of Attribute-Driven Design (Wojcik, et al., 2006) was applied
in order to derive a suitable architecture for the system. This is a four-step
procedure that entails:

1. Identifying the business goals

2. Identifying the architectural drivers
3. Deriving the system architecture

4. Deriving the software design

After that comes the step of verifying the design to ensure that it meets the
required quality attributes. This is primarily achieved by generating quality
attribute scenarios and deriving various tests from them.

Business Goals

Business goals are the primary objectives for the authors to achieve in
a specified time frame, and do not necessarily indicate a profit-oriented
business.

Architectural Drivers

Architectural drivers are system requirements that are significant from the
architectural perspective (Froberg, Larsson, & Nordlander, 2013). They
mainly include the quality attributes, technical and business constraints, and
some functional requirements.

For the quality attributes, the ISO 25010 (ISO, 2011) defines a reference
for the characteristics which a system can possess. The technical and busi-
ness constraints are considered when choosing the most important quality
attributes.

Functional requirements are the features that the system must offer for
the users to be able to achieve their goals from using the system. They are
commonly written in the form of user stories (Cohn, 2004) which outline the
requirements from the perspective of the user. Some functional requirements
may affect architectural decisions, while the majority are architecturally
insignificant.



Crowdsourcing for Second Language Learning 89

System Architecture
The attribute-driven design method (Bass, Clements, & Kazman, 2012) uses
the previously outlined attributes to derive an appropriate architecture. First,
a design roadmap is chosen, then a subset of the system’s elements is cho-
sen. The requirements for these elements are identified and a design concept
is selected based on them. After that, architectural elements are instantia-
ted. These decisions are then recorded, and the process is repeated until a
condition is met, indicating that a satisfactory architecture is reached.
Architectural design concepts are methods by which the target requirement
can be tackled. For each such architecturally significant requirement, a design
concept is selected to be applied on the architecture generated thus far. This
includes choosing the architectural elements, allocating their responsibilities,
as well as defining their interfaces.

Software Design

After deriving the system architecture, the low-level software design becomes
straightforward since it is a matter of picking the appropriate design patterns
that serve the desired quality attributes. This gets reflected on the structure
of the code in terms of module distribution.

Verification
After the architecture is developed and the software gets designed, these
designs must be validated. In this case, validation means verifying that the
system possesses attributes that promote the business goals stated earlier.
Quality attribute scenarios and acceptance criteria are used to perform such
verification.

For every selected quality attribute, a scenario is written as a test that veri-
fies the presence of the aforementioned attribute. The framework of quality
attribute scenarios can be summarized in the following table (Du, 2010):

Usability Testing

Usability testing (Lewis, 2006) is a technique used to evaluate a product by
testing it on real users and collecting feedback on how they use it. It is most
useful in highly interactive, user-centered designs (Pimenov, 2021) and invo-
lves identifying key stakeholders, designing tasks for each stakeholder group,
and asking volunteers to complete the tasks. The goal is to understand how
easy the users find the product to interact with without prior guidance. It is

Table 1. Quality attribute scenarios overview.

Scenario part Description

Source of stimulus ~ The entity (human or otherwise) whence the stimulus is

generated
Stimulus The event that arrives at the system
Environment The conditions of the system when the stimulus arrives
Artifact The stimulated part of the system
Response The activities to perform upon the arrival of the stimulus

Response measure ~ The metric that determines the success of the response




90 Abounegm et al.

important to inform the volunteer users of the expected end result of their test
task and not how to achieve it, since the goal is to figure out how the users
think it is natural to achieve it. This method can be classified as unmoderated,
assessment testing (8 usability testing methods that work (types + examples),
2022).

IMPLEMENTATION

This chapter discusses the implementation of the system and what was
developed.

System Design

As outlined in the previous chapter, the Attribute-Driven Design methodo-
logy was followed in order to reach a suitable architecture for the system.
That entailed identifying the business goals, deriving architectural drivers
from them, using the architectural drivers to build an architecture, and finally
designing the software that actually implements the architecture.

Architectural Drivers
The architectural drivers consist of system constraints, quality attributes
(according to the ISO 25010 model), and architecturally significant functio-
nal requirements. There are no business constraints imposed on the system.

As a crowdsourcing platform, the system is expected to possess the attri-
butes of scalability, usability, portability, as well as security. The system must
be able to scale depending on the demand levels since its main requirement is
to gather resources from a large number of users. These users may not neces-
sarily be tech-savvy, so the system must be easily usable for them. Similarly,
they may not always have access to the same kind of device, so the system
must be portable. Lastly, users expect their privacy to be protected, so secu-
rity is essential. For each of these attributes, a quality attribute scenario is
designed to ensure that it is promoted by the system architecture.

As for the architecturally significant functional requirements, the following
can be identified:

« Users should be able to create stories that are persisted in a database and
shared such that any other user can read them, while only the author can
modify them.

« Users should be able to search through the stories using filters such as
language and popularity.

The identified quality attribute scenarios are outlined in Tables 2-S5.

System Architecture
From the identified architectural drivers, attribute driven design was follo-
wed, leading to a software architecture with the following components:

. Firebase: A Platform as a Service offering scalable backend products.
. Algolia: A Software as a Service that provides an efficient search engine.



Crowdsourcing for Second Language Learning 91

Table 2. Scalability quality attribute scenario.

Scenario part

Description

Source of stimulus
Stimulus
Environment

Artifact
Response
Response measure

A new user

The user registers and attempts to play a story

System already has a large number (>10000) of users and
stories

The whole system

The requests are handled successfully

The request is handled in the same amount of time it would
if there were only a few (<100) users and stories

Table 3. Usability quality attribute scenario.

Scenario part

Description

Source of stimulus
Stimulus
Environment
Artifact

Response

Response measure

The end user

The user wished to learn to use the system effectively
Normal system runtime and system configuration

The mobile app through which the user interacts with the
system

The user interface provides easy access to all the features the
user needs

Usability testing was successful with positive feedback

Table 4. Portability quality attribute scenario.

Scenario part

Description

Source of stimulus
Stimulus

Environment
Artifact

Response

RCSpOIlSC measure

A registered user

Starts an action on one device, and wants to continue on
another device

Under normal working conditions

The whole system

The user’s actions are saved and they are able to continue on
them on the other device

No data is lost while switching to the other device

Table 5. Security quality attribute scenario.

Scenario part

Description

Source of stimulus
Stimulus
Environment
Artifact

Response
Response measure

An unauthenticated user

Attempts to modify a story

Under normal working conditions

The database

Firestore security rules should block the request
No data has been modified

« Flutter: A front-end framework that allows for rapid development of user-
friendly cross-platform applications.



92 Abounegm et al.

Firebase provides scalability, security, and a strong security system, while
Algolia provides ease of access and search. Flutter helps build a portable
application with an intuitive user experience. Together, these services provide
a straightforward realization of the quality attributes.

Software Design

The software design is about how the code is structured to achieve the archi-
tecture above. The Feature Sliced Design methodology was applied to achieve
a decoupled and highly maintainable codebase.

Verification

To verify the promotion of each quality attribute, tests must be derived based
on response measures. Load testing, Usability Testing, and Portability Testing
are used to verify scalability, usability, and security. Load testing is done by
applying a high demand on the system and measuring its response. Usability
Testing is done by performing tasks a typical user would perform on one
device and ensuring that performing the same set of steps on another device
with leads to the same results. Portability testing is done manually since it
is difficult to find an automated tool that can be customized to the features
of each specific system. Security testing is done through Firebase’s SDK and
Firestore’s Rules Playground simulator to ensure no user can access or modify
any date they should not.

Usability Testing

To perform usability testing, we identified the key stakeholders of the system,
devised test tasks for each group of stakeholders, and recorded and analyzed
the test sessions. These stakeholders included language learners, story narra-
tors, translators, editors, and reviewers. Tests were designed to cover the most
relevant features for each group, such as completing a store, translating an
existing store, or creating a new one. After recording the test executions, they
were reviewed and analyzed to extract the main pain points of the application
and pinpoint areas where improvements are most needed.

RESULTS AND DISCUSSION

System tests and usability tests are used to verify the usability of a system.
This chapter presents the results of these tests and discusses the implications.

System Verification

Armed by the Quality Attribute Scenarios designed in the Implementation
section, the Response Measures were used as test cases for either automated
or manual testing.

The response measure for scalability was that “the request is handled in
the same amount of time it would if there were only a few users and sto-
ries”. According to the Advanced Databases Project, Firestore guarantees
being able to handle up to one million concurrent connections without affe-
cting latency or error rate. The results of usability tests are detailed in the next
section. The response measure for portability was to ensure that no data is



Crowdsourcing for Second Language Learning 93

lost while switching to the other device, and that all features can be perfor-
med on both devices. All activities are portable and can be continued on a
different device, granted that the user is logged in on both devices with the
same account. The application also has working versions on Android, iOS,
and Web, so it passes the portability test.

The quality of security was measured by the fact that “no data has been
modified” after a user attempts to modify data they are not authorized to
modify. This was tested by hand by enumerating possible scenarios and com-
binations of user authorization and data, judging whether the action should
be allowed, and evaluating whether the security rules block that action. After
testing and updating the rules multiple times, it was demonstrated the system
is secure enough and no data gets modified by unauthorized users. Thus, the
system is considered secure.

Usability Testing

The feedback gathered from the first round of usability testing was indispen-
sable to the improvement of the product of finding out areas where it lacked.
The tests were conducted with four participants, all of whom opted for the
Learner role, with one of them additionally testing the Narrator role, and
another testing the Translator role. More rounds of testing will be done in
the future after addressing issues highlighted by the first round.

CONCLUSION

In this work, a cross-platform application was developed that combines
Krashen’s theories for language learning with state-of-the-art crowdsourcing
mechanisms to promote second language learning. One significant outcome is
that the system allows for the democratic contribution of resources for under-
represented languages while ensuring that all contributed assets remain of a
high quality, as determined by the users. The resulting application provides
a gamified experience for users with a social element where users can inte-
ract together by viewing and liking each other’s stories. This was supported
by a flexible infrastructure and a number of volunteers who helped test the
system. Verification methods were also employed to measure the success of
the developed platform. In general, the system passed all the criteria except
for usability, which will be improved in the future. In summary, other than
the minor usability issues, the system can be said to have achieved its business
goals.

REFERENCES

8 usability testing methods that work (types + examples). (2022, February). 8 usa-
bility testing methods that work (types + examples). Hotjar. Retrieved from
https://www.hotjar.com/usability-testing/methods/

Askarbekuly, N., Solovyov, A., Lukyanchikova, E., Pimenov, D., & Mazzara, M.
(2021). Building an educational product: constructive alignment and requirements
engineering. In Advances in Artificial Intelligence, Software and Systems Engine-
ering: Proceedings of the AHFE 2021 Virtual Conferences on Human Factors


https://www.hotjar.com/usability-testing/methods/

9 Abounegm et al.

in Software and Systems Engineering, Artificial Intelligence and Social Compu-
ting, and Energy, July 25-29, 2021, USA (pp. 358-3635). Springer International
Publishing.

Bass, L., Clements, P., & Kazman, R. (2012). Software Architecture in Practice (3rd
ed.). Addison-Wesley Professional.

Cohn, M. (2004). User stories applied: For agile software development. Addison-
Wesley Professional.

Du, W. (2010). Understanding quality attributes. Understanding quality attri-
butes. University of New Brunswick. Retrieved from https://www.cs.unb.ca/
wdu/cs6075w10/sa2.htm

Finardi, K. R., Leao, R. G., & Amorim, G. B. (2016). Mobile assisted language
learning: Affordances and limitations of Duolingo. Education and Linguistics
Research, 2,48-65.

Fréberg, J., Larsson, S., & Nordlander, P.-A. (2013). A method for analyzing archi-
tectural drivers when engineering a system architecture. 2013 IEEE International
Systems Conference (SysCon), (pp. 711-717).

ISO. (2011). System and software quality models. ISO, International Organization
for Standardization, Geneva. Retrieved from https://www.iso.org/standard/35733
html

Krashen, S. (1982). Principles and practice in second language acquisition.

Lampariello, L. (2020, July). The remarkable power of stories and storytelling as
ways to learn languages. The remarkable power of stories and storytelling as ways
to learn languages. Retrieved from https://www.lucalampariello.com/storytelling
-learn-languages/

Lewis, J. R. (2006). Usability testing. Handbook of human factors and ergonomics,
12, ¢30.

Mixon, M., & Temu, P. (2006). First Road to Learning: Language through Stories.
English Teaching Forum, 44, pp. 14-19.

Oxford, R. (2001, January). Language learning styles and strategies: An overview.

Pimenov, D., Solovyov, A., Askarbekuly, N., & Mazzara, M. (2021, December).
Data-Driven Approaches to User Interface Design: A Case Study. In Journal of
Physics: Conference Series (Vol. 2134, No. 1, p. 012020). IOP Publishing.

Sembok, T., Abuata, B., & Bakar, Z. (2011, May). A Rule and Template Based
Stemming Algorithm for Arabic Language. International Journal of Mathematical
Models and Methods in Applied Sciences, 5.

Solemon, B., Ariffin, I., Din, M. M., & Anwar, R. M. (2013). A review of the uses of
crowdsourcing in higher education. International Journal of Asian Social Science,
3,2066-2073.

Wang, A., Duy, C., Hoang, V., & Kan, M.-Y. (2010, August). Perspectives on Cro-
wdsourcing Annotations for Natural Language Processing. Language Resources
and Evaluation, 47. doi: 10.1007/s10579-012-9176-1.

Wang, W., Bohus, D., Kamar, E., & Horvitz, E. (2012, December). Crowdsou-
rcing the acquisition of natural language corpora: Methods and observations.,
(pp. 73-78). doi: 10.1109/SLT.2012.6424200.

Wojcik, R., Bachmann, E, Bass, L., Clements, P., Merson, P., Nord, R., & Wood, B.
(2006). Attribute-driven design (ADD), version 2.0. Tech. rep., Carnegie-Mellon
Univ Pittsburgh Pa Software Engineering Inst.


https://www.cs.unb.ca/
https://www.lucalampariello.com/storytelling-learn-languages/
https://www.lucalampariello.com/storytelling-learn-languages/

	Crowdsourcing for Second Language Learning
	INTRODUCTION
	RELATED WORK
	Language Learning

	METHODOLOGY
	Architecture Derivation
	Business Goals
	Architectural Drivers
	System Architecture
	Software Design
	Verification

	Usability Testing

	IMPLEMENTATION
	System Design
	Architectural Drivers
	System Architecture
	Software Design

	Verification
	Usability Testing


	RESULTS AND DISCUSSION
	System Verification
	Usability Testing

	CONCLUSION


