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ABSTRACT

Voluntary Safety Reporting Programs (VSRPs) allow civil aviation authorities, ope-
rators, and manufacturers to actively monitor and identify potential safety issues
within their operations. These first-hand reports enable organizations to develop and
implement safety and efficiency improvements based on front-line observations. The
National Aeronautics and Space Administration (NASA) operates the Aviation Safety
Reporting System (ASRS) to empower the aviation industry and its participants to
report observed safety problems, discrepancies, or deficiencies. ASRS receives, pro-
cesses, and publicly releases thousands of reports annually. For example, 6,428 ASRS
reports are currently available detailing events that occurred in 2019; any interested
party can download these ASRS reports and associated data. Often, researchers and
analysts will then read and manually label factors of interest in each report to gain
safety insights. This manual process can be labor-intensive and relies on the ongoing
efforts of subject-matter experts. The full potential of various voluntary safety repor-
ting data can be difficult to realize due to the limited resources available to analyze
and summarize these data. New machine learning techniques involving natural lan-
guage processing offer opportunities to assess and label factors of interest within
safety reports more efficiently and effectively. A novel machine learning model has
been developed and trained to identify human factors issues within aviation safety
reports. The AVIAN-S model has been built and iteratively trained on over 50,000 rows
of manually classified aviation safety reporting data. The model uses machine learning
and natural language processing to automate the process of labeling aviation safety
reporting data and codifying reporter narratives according to an established human
factors taxonomy. This paper will describe lessons learned from the initial model deve-
lopment iterations and present interim results of the model as applied across a set of
sample event reports. The paper will further discuss the challenges and implications
of using natural language processing to identify human factors issues emerging from
this or other large aviation safety reporting data sets.
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INTRODUCTION

Aviation is the safest form of transportation (ICAO, 1999). The probability of
an accident, specifically one involving fatalities, is extremely low; therefore,
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reactive analyses of aviation safety accidents only provide a partial picture
of the aviation industry and aviation safety (Oster Jr. et al., 2013). When
analyzing aviation safety data, it is important to incorporate other incidents
and events that occur to create a more holistic view of aviation safety.

One way of doing this is by collecting and reviewing aviation safety event
reports. The Federal Aviation Administration (FAA) established numerous
aviation Voluntary Safety Reporting Programs (VSRPs) that allow indivi-
duals to file reports on specific aviation events that have occurred, as well
as noting observed safety problems. One such program is Aviation Safety
Reporting System (ASRS). This system established a partnership between the
National Aeronautics and Space Administration (NASA) and the FAA and
allows for confidential reporting from any National Airspace System (NAS)
participant, including pilots, cabin crew, maintenance technicians, ground
personnel, and air traffic controllers. These safety reports are analyzed by
NASA personnel and are used to identify system-level safety risks. The ASRS
program has been in operation since 1976 and, to date, over 1.7 million
reports have been filed and analyzed (NASA, 2023).

While NASA conducts an initial analysis of these reports, often researchers
and analysts will download a subset of reports to conduct their own analyses
based on their needs. To do this, researchers will read and manually label
factors of interest in each report to gain safety insights. This process can be
labor-intensive and relies on the ongoing efforts of subject-matter experts
(SMEs) to manually read and label those reports. The full potential of ASRS
reports and other voluntary safety reporting data can be difficult to realize
due to the limited resources available to analyze and summarize these data.
New machine learning (ML) techniques involving natural language proces-
sing (NLP) offer opportunities to assess and label factors of interest within
safety reports more efficiently and effectively.

Some aviation researchers have initially examined the application of NLP
to aviation and specifically, ASRS. Kierszbaum and Lapasset (2020) used
NLP to extract the event date from the free text portion of ASRS reports
with relative success. Those same researchers have continued by highligh-
ting the imporatance of using a pre-trained, aviation model in the ASRS
application of NLP due to the unique language of aviation (Kierszbaum,
Klein, & Lapasset, 2022). Other researchers have utilized NLP of aviation
safety reports to examine flight delays in ASRS (Miyanmoto, Bendarkar, &
Mavris, 2022) and probable cause in National Transportation Safety Board
(NTSB) reports (Jonk et al., 2023). This research along with other NLP rese-
arch emphasizes the potential application of NLP in aviation safety event
reporting.

Our team has developed and trained a model utilizing VSRP data that was
manually labeled by SMEs. This AVIation Analytic Neural network for Safety
events (AVIAN-S) model incorporates ML and NLP to automate the identi-
fication and labeling of human factors (HF) taxonomy items within VSRP
reports. This project is an independent self-funded research effort. Views and
results are those of Fort Hill Group and do not represent opinions or views
of the FAA or NASA.
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SAFETY EVENT REPORTING ANALYSIS AND DEVELOPMENT OF
MODEL TRAINING DATA

This paper explores the creation of a model aimed at codifying aviation safety
report data as a means of gaining meaningful safety insights within the field
of aviation. As such, a manual coding process for analyzing safety reports
was developed. This process resulted in training data that were utilized as
model inputs. The first step in this process was identifying an appropriate
HF taxonomy to be applied to the safety event reports.

AirTracs Taxonomy

The AirTracs framework follows a tiered approach that promotes the identi-
fication of HF causal trends by allowing factors from the immediate operator
context to agency-wide influences to be traced to individual events while still
being able to identify HF patterns. AirTracs is a published and industry-
applied aviation human factors taxonomy utilized for analyzing aviation
data. Our goal was to apply the established AirTracs taxonomy to aviation
safety event reports using the novel AVIAN-S AI model.

As depicted in Figure 1, the first tier is “Operator Acts”; the second tier is
“Operating Context”; the third tier is “Facility Influences”; and the fourth
tier is “Agency Influences.” Operator Acts addresses those factors most clo-
sely linked to the actual safety event and describes the actions or inactions of

Figure 1: The AirTracs framework.
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Figure 2: Example ASRS report with labeled AirTracs factors and rationales.

the operator. Operating Context factors detail the environment, interactions,
and preconditions linked to the Operator Acts. The third tier, Facility Influ-
ences, identifies the factors related to the actions or inactions of individuals
at a facility that can impact the entire facility or multiple individuals at that
facility. The fourth tier, Agency Influence, examines those factors related to
the actions or inactions of the Agency. The AirTracs factors are not mutually
exclusive, and safety event classifications should include factors from all four
tiers. For more information on AirTracs, refer to Berry, Sawyer, and Austrian
(2012).

Training Dataset

A large set of manually labeled aviation safety reports is necessary to train an
NLP model. This dataset was prepared by applying the AirTracs taxonomy
to a significant volume of ASRS safety reports. The primary description of
what happened in each safety event is recorded in a text field referred to as
Combined Narratives. The Combined Narratives field consists of the first-
person narrative description by the reporter(s), the self-reported roles of those
reporters, and any callbacks, which are supplemental textual responses to an
ASRS analyst’s follow-up questions to the original reporter(s). A report may
contain up to two narratives and as many as two callbacks.

The AirTracs taxonomy was applied to a selection of ASRS reports. The
reports were analyzed by HF and aviation SMEs with the AirTracs taxo-
nomy to identify a variety of applicable factors, along with a rationale (see
Figure 2). The rationale identifies the relevant string of sub-text from the
Combined Narratives and serves as a more focused explanation of the reason
the factor was applied to the event. For more information on how to apply
AirTracs and example results, please refer to Sawyer, Berry, and Austrian
(2012). Each ASRS report has many additional fields beyond the narrati-
ves and callbacks (e.g., flight conditions, reporter function, etc.), and the
application of AirTracs results in additional data fields (e.g., effect type).
However, this initial application of NLP was scoped to address the Combined
Narratives and the presence/absence of AirTracs factors.
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Figure 3: Word cloud output of 17,836 report analyzed with AirTracs.

The ASRS database contains over 100,000 reports filed between Febru-
ary 2002 and August 2022. Our team has analyzed 17,386 of those safety
reports, identifying 61,680 total AirTracs factors (an average of 3.55 factors
per report). For each identified factor, the team labeled the accompanying
rationale within the narrative related to the identified factor. This initial data
set of labeled reports represents a significant application and investment of
resources.

Before beginning active model development, the data set was reviewed to
confirm that it met expectations about language frequency, and to identify
any notable or unusual features. The narratives contained 15,454 distinct
words. Approximately 40% of the words do not appear in a standard-
language dictionary. A brief review of the non-normal words revealed an
unsurprising set of aviation-specific acronyms and other languages (e.g.,
go-around, ADSB), some timely language (e.g., COVID), and various mis-
spellings. Figure 3 shows an example word cloud.

MODEL DEVELOPMENT

Several ML tools were explored to determine the best fit for this application,
with the Python AI/ML tool chosen due to its flexibility, availability, and
extensive library of support materials. After selecting Python AI/ML for our
model development, the first step was to load the 61,680 AirTracs factors
previously labeled by SMEs and the supporting ASRS data. This included the
full Combined Narrative, the AirTracs factor code (e.g., EX-01B), and the
rationale. AirTracs is a tiered taxonomy indicating that a factor at a lower tier
(child) is also represented by the associated higher tier (parent). The model
incorporated this multi-level classification scheme, with each rationale being
labeled for every corresponding level of the hierarchy.

Early iterations of the model used the full narrative text for the analysis.
Given that 1) ASRS output provides the full combined narratives, and 2) the
AirTracs analysis identified the rationale sub-text, the goal was to have the
ML model work directly from the source material. However, given that the
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full narratives matched for multiple unrelated factors, it was decided that trai-
ning the model using the rationale sub-text rather than the complete narrative
would be more efficient. Later iterations of the model beyond the scope of
this paper will explore the path to extracting and labeling rationales directly
from the full narrative text. Table 1 describes these key model inputs.

Various Python AI/ML tools were then used to build, train, and test the
model. Ninety percent of the data were used as training material for the
model, with 10% retained for future testing purposes. The model was built
using the Keras API (Chollet, 2015) for the TensorFlow library (Abadi et al.,
2016). Most iterations of the model used components of the NLTK (Natural
Language Toolkit) (Bird et al., 2009), as well as the scikit-learn and scikit-
multi-learn classification libraries (Buitinck et al., 2013). With the source
text selected, there were a number of pre-processing steps necessary to pre-
pare the text for use by the model, e.g., removing punctuation, stop-words,
non-English text, and numbers.

Because the language of machine learning algorithms is matrix math on
numerical data, the text needs to be converted to a numerical vector, also
called vectorization. The model progressed through several means of vecto-
rization, beginning with one-hot encoding, and currently using the Term
Frequency-Inverse Document Frequency (TF-IDF) Vectorizer.

The first layer in the model converts the vectorized text into an embed-
ding layer, which positions related words in close proximity to each other in
a multi-dimensional vector space. In the current iterations, the model is trai-
ning its embedding layer as part of the neural network; future iterations are
likely to use a pre-trained embedding layer such as GloVe (Global Vectors for
Word Representation). This embedding layer is trained on a very large corpus
of English language text, allowing the model to take advantage of informa-
tion about the meaning of words and for synonyms to be seen as related, or
sentiment (attitude of the writer) to be given weight. These are all factors that
the SME analysts use in their process, and which are likely to be helpful to
the model moving forward.

Table 1. Key model inputs.

Data Inputs Example Explanation

Tiered, multiple nested
taxonomy codes versus
unique individual code

Tiered: CC01-A,
CC01, CC
Unique: CC01-A

Single labels resulted in less
information and very sparse
labels. Tiered accounts for the
multi-level nature of taxonomy.

Rationale sub-text
versus complete
Combined Narratives

Sub-Text:
∼25-word text
representing a
factor
Full: ∼400-word
text representing
>3.5 factors on
average

The rationale text is more closely
describing the factor.
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The remainder of model development involved building out the structure
of the neural network, selecting layers, and modifying their hyperparameters.
The model had a self-trained embedding layer with the training data affecting
the selected size of the word vectors, sequence length, and vocabulary size.
The current iterations of the model use a Long Short-Term Memory (LSTM)
layer that looks for relationships between elements that appear in a sequence.
Since the input data in this model are words, phrases or sequences of words
can be connected, rather than being treated only as independent words. The
model also has contained convolutional layers that work to extract useful
information from the input data by making small changes and looking at
the outcomes. Finally, a densely connected layer appears at the end of the
chain of layers to map the output of all previous layers onto the multi-label
classification output.

The resulting model uses a binary cross-entropy loss function to determine
which changes in the network make improvements and which do not. This
function compares the model’s predicted output with the output from the
SME analyst and gives a score that allows the model to test the quality of
its changes. The model also uses the Adam optimizer to determine which
changes to make as it updates the weights in the network (Kingma & Ba,
2014).

Finally, the metric used in the model to determine its accuracy is TopKCate-
goricalAccuracy. This accuracy measure uses the frequency that the targeted
factors appear in the top [K] of themodel’s predictions. Because some rationa-
les are used with different factors, it is possible that a correct model prediction
for a given rationale would match many of those factors. The model curren-
tly uses a K of 9, with the intent of balancing the need for multiple correct
matches with the possibility of overfitting with too many acceptable (but
incorrect) matches.

PRELIMINARY RESULTS AND LESSONS LEARNED

After one training epoch, the current model has a training accuracy in the
range of 94%-98%, with the validation accuracy dropping quickly and line-
arly with each additional epoch. Additional epochs show small improvements
to measured accuracy, but the falling accuracy using the validation dataset
indicates that the “improved” accuracy is largely due to the overfitting of
the model. Running the model against the retained test data results in a real-
world measured accuracy in the range of 89%-97%. These numbers vary
depending on the random data split for the training and testing data.

Reviewing specific examples of model predictions helped to identify some
of the sources of error as well as opportunities for improvements. Frequently,
a rationale’s predicted factors are correct but for a different labeled factor
within the same event, i.e., the same rationale is labeled with two distinct
factors. In the data preparation phase, those factors are then expanded to
indicate matches for each tier of the taxonomy. However, when the model
creates a prediction of factor “A” for the row of text that was marked for
factor “B”, it was marked as a failure. This is the kind of problem that the
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TopK accuracy measure is intended to overcome, and as a result, the accuracy
has improved.

NEXT STEPS

There are opportunities for improvements to the model within the current
data inputs. In particular, using a pre-trained embedding layer (e.g., GloVe) to
allow the model’s treatment of the source text material to begin from a base
level of English “understanding” is likely to improve results. Additionally,
future iterations of the AVIAN-Smodel will be expanded to incorporate other
portions of the ASRS data, such as the reporter function, and of the AirTracs
data, such as the factor effect.

The current AVIAN-S model was trained using the rationale sub-texts that
were extracted by the human labelers from the full combined narratives.
Using the model to extract the rationale statements, in addition to labeling
the associated factors, will be an important next step in the process of using
the model to perform the initial task of labeling AirTracs factors from the
combined narrative source material. There is also an opportunity to explore
the validation and application of the AVIAN-S model to additional ASRS
reports and even other safety event databases.
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