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ABSTRACT

Virtual environments are increasingly used for assessment and training. While vir-
tual environments offer ecologically valid stimulus presentations, they still follow a
one-size fits all model. Technological innovation provides opportunities to transform
the virtual environments into a customized experience for each individual user. This
allows for the personalization of the virtual environment to the unique capabilities
of a user. Active and passive data logging systems provide data necessary for ada-
ptive virtual environments. Currently, most adaptive systems apply either active or
passive data collection for building an adaptive virtual environment. The goal of the
current research is to identify an optimal methodology for integrating both active and
passive data into an adaptive virtual environment that can employ user data for fine
tuning stimulus presentations. The framework suggested provides optimal performa-
nce parameters for identifying user cognitive and affective states and keeping users
in a flow state. The result is a customized experience that is personalized to the user.

Keywords: Adaptive virtual environments, Electroencephalography, Machine learning, Psycho-
physiology, Neuropsychology, Cognitive

INTRODUCTION

Virtual environments cover a variety of human-computer interaction deli-
very systems including video games, virtual reality, augmented reality, and/or
mixed reality. While these simulation platforms are often promoted for their
entertainment value, they also offer important promise for research and pra-
ctice. Significant increases in applications for learning, cognitive training,
psychological assessment, and rehabilitation are found in the literature (Bohil
et al., 2011; Parsons et al., 2020). Technological advances have enhanced
the multisensory presentations of virtual environments. However, these envi-
ronments primarily follow a one-size fits all development model. Recent
technological advancements provide the possibility for dynamically adaptive
virtual environment (AVE) platforms that adapt to users in a manner that
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offers enhanced interactive experiences (Zahabi & Abdul, 2020, Scott et al.
2016, Shute & Towle 2018).

Converting a virtual environment into an AVE requires logging speci-
fic user performance data. Currently, the two best methods of identifying
user performance are active and passive user metrics. Passive metrics include
logging of physiological metrics for passive detection of changes in neuro-
cognition (e.g., electroencephalography (EEG)) and autonomic arousal (e.g.,
electrodermal activity (EDA); electrocardiography (ECG); electrodermal acti-
vity (EDA); respiration, and electromyography (EMG). Active metrics are
assessed via logs of user behaviours while immersed in the virtual environ-
ment. Active measures mainly focus on timing to complete specific tasks,
error rate, responses to cuing, and individual task reactions. Most AVEs
implement either active or passive monitoring to perform the adaptation. The
ideal AVE would implement both active and passive metrics to create a fluid
user experience.

An adaptive Virtual School Environment (VSE) with an interactive vir-
tual human teacher and interactive virtual students has been designed that
includes a Virtual Classroom Stroop assessment (McMahan et al. 2022). The
VSE includes multiple scenarios (e.g., Stroop test, continuous performance
test, and picture naming) presented to the user while immersed within a vir-
tual classroom, hallway, and playground. All scenarios include the option to
incorporate social cues from the virtual human teacher (see Figure 1). The
Virtual Classroom Stroop Task within the VSE includes both high and low
levels of distractions (e.g., visual, auditory) as well as multiple methods for
delivering stimuli (e.g., visual, auditory, and bimodal). Utilizing the virtual
teacher in the VSE provides multiple quantitative measures including accu-
racy, average reaction time for correct and incorrect answers—all with and
without teacher directed attention and/or distractions.

Another virtual environment is the Virtual Environment Grocery Store
(VEGS), which offers a high-fidelity virtual environment-based cognitive
assessment (see Figure 1). The goal of VEGS, is to have users interact within
the environment while performing a shopping task. VEGS, as a cognitive task,
has the capability of measuring a person’s learning, memory, navigation, and
executive functions. VEGS is built to have multiple distraction capabilities.

Figure 1: Virtual school environment utilizing the STROOP; Virtual environment
grocery store.
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Recent psychometric validation found VEGS to have good construct validity
for evaluating both young and older adults (Barnett et al. 2022; Weitzner et al.
2021). VEGS was found to be primarily an episodic and prospective memory
assessment in the low distraction version (Parsons & Barnett 2017). Adding
more distractions to the environment like NPCs, environmental noise, and
visual elements showed that a user’s performance was linked to both memory
and executive function measures (Parsons & McMahan 2017).

ACTIVE METRICS

Active metrics are the metrics that we can extrapolate from the virtual envi-
ronment itself. Because the user is constantly and actively completing tasks
and objectives within the virtual environments, we have several metrics that
we can be utilized to categorize the user’s performance. Table 1 lists potential
active metrics for virtual environments. These metrics are collected throu-
ghout the assessment process. One issue with active metrics is that while
the active data is immediately logged, it must be postprocessed offline. In
Table 1, several variables are calculated based upon the average over a given
time period (e.g., average time to perform an operation in the VEGS, mean
response time over a stimulus presentation condition in the VSE). The user
must progress through the tasks before the system is able to make predictions
about how the user is performing. This postprocessing delay causes the ada-
ptability to be delayed until enough data is collected to perform the correct
adaptation for the user.

Table 1. Possible active metrics extrapolated from virtual environments.

Virtual Environment Grocery Store Virtual School Environment STROOP

# of times looked at shopping list Mean Response Time Box Correct
(Interference/Congruent)

Travel time to pharmacist Mean Dwell Time Box Incorrect
(Interference/Congruent)

Time spent shopping Mean Response Time Word Correct
(Interference/Congruent/Incongruent)

ATM withdraw time Mean Dwell Time Word Correct
(Interference/Congruent/Incongruent)

First item picked up Mean Response Time Word Incorrect
(Interference/Congruent/Incongruent)

Average pick up time Mean Dwell Time Word Incorrect

(Interference/Congruent/Incongruent)

PASSIVE METRICS

Passive AVE metrics are any metrics in which we can passively collect data
in real-time. This includes eye-tracking, facial action coding, speech emo-
tion recognition, and psychophysiology measures. Some psychophysiology
measures lend themselves better to AVE’s because they provide closer to
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real-time data (e.g., EEG, EMG and HR). One of the greatest benefits of
psychophysiological signals is that they passively log user experience in a
continuous manner that does not break the users sense of presence (Allanson
& Fairclough 2004). The passive logging of psychophysiological data is done
without the user’s awareness. This provides objective measures of cognitive
workload (Dehais et al. 2020, Tao et al 2019), task engagement (Pope et al.
1995), arousal (Cuthbert et al. 2000), and stress levels (Panicker et al., 2019).
The goal of the current research is to identify a methodology to integrate the
active metric results with our passive metrics measurements, specifically EEG.
Table 2 shows various metrics we can gather from EEG to use for AVEs.

Table 2. Active metrics from EEG.

Passive EEG Measurement
Metrics
Delta 1 — 4 Hz Dominant wave during deep sleep
Theta 4 — 7 Hz Dominant wave during light sleep
Alpha 7 - 13 Hz Dominant wave when in a state of relaxation
Beta 13 — 25 Hz Dominant wave when active, busy, or concentrating
Gamma 25 — 43 Hz Dominant wave when forming ideas or memory
processing
Global Bet
Engagement (Gﬁo ba!F ?lp% 1F€iel§bal Theta) (Freeman et al. 1999)
Arousal ( A(lpe}EZFfS :[ AT[t)ahaF)4) (Giraldo & Ramirez 2013)
Valence % — % (Giraldo & Ramirez 2013)

MACHINE LEARNING ALGORITHMS

Machine learning offers a solution to categorizing how a user is performing
in real-time within a virtual environment. Several machine algorithms exist
which have demonstrated the potential to work in real-time including Sup-
port Vector Machine (SVM), Naive Bayes (NB), and k-Nearest Neighbor
(kNN). SVMs employ hyperplanes to portion the data into two or more
classes. SVMs train via data known to be associated with each category
and makes an attempt to position the data points into a higher dimensio-
nal space. The NB classifier is based upon Bayes theorem and uses computed
probability that a given collection of data points is associated with a spe-
cific class. Classification of data points is done by selecting the result with
the greatest probability. During the training period, KNN employs vectors
containing features to store each category of data. Classification of new data
requires kNN to compute the shortest distance between possible categories.
Whichever category has the shortest distance is selected as the most possible
category.

Passive and Active Machine Learning Results

Research performed previously has shown that passive measures are capable
of categorizing a user into either high or low performer category in both the
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VSE and VEGS (McMabhan et al. 2021, McMahan et al. 2021). Participants
were classified as either high or low performers based upon the calculated
throughput in the VSE. Within the VEGS, high and low performers were
categorized based on the number of items the user found while shopping. Two
categories were chosen initially to best determine which classifier worked best
with the type of data being fed to it. SVM always performed the best; kNN
was closely behind and way above NB. However, it was suggested that the
most optimal solution would utilize both the SVM and kNN classifier.
Utilizing EEG as a passive metric has been demonstrated to be more then
capable of classifying users within a specific state in a virtual environment
(McMahan & Parsons 2020). Utilizing engagement, arousal, and valence
indices user states were classified utilizing SVM, kNN and NB. Similarly like
the active results, it was determined that the ideal solution would be a combi-
nation of all the classifiers. The results from the classifiers were applied into
a flow model designed to balance the intensity and complexity vs the user’s
ability level. The goal of the flow model is to keep the user in the perfect
immersive state not to stressed and not bored with the current task. Utili-
zing EEG provided a solution for the creation of a flow model built upon the
coordinate system of “Task Engagement” and “Arousal-Valence”.

Combining Active and Passive Metrics in Machine Learning

The combination of multiple machine learning algorithms, also known as
ensemble machine learning, provides a better solution to increase the perfor-
mance overall for the AVE utilizing them (Gupta et al., 2020; Sun et al.,
2007). Using both passive and active metrics in machine learning should
increases the overall accuracy in classifying users into the correct category.
The major issue that must be resolved is the interval nature of active metrics
which only becomes available during certain times of the AVE and the conti-
nuous nature of passive metrics which are available immediately at the start
of the AVE. Majority voting is one potential technique that uses multiple
classifiers to vote on the correct category (Rojarath et al., 2016). Stacking
classifiers is another approach in which the results of classifiers are fed in as
new predictors to additional classifiers (Chatterjee & Byun, 2022).

Figure 2 demonstrates these two possible solutions for ensemble mach-
ine learning systems to take advantage of both types of data within an AVE.
Figure 2A implements a voting scheme to determine the overall correct clas-
sification between the continuous data and the interval data. The voting
scheme requires that the AVE implement four independent classifiers (e.g.
kNN continuous data, SVM continuous, kNN interval, SVM interval). The
continuous classifiers (bottom two classifiers in figure 2a) would be run based
upon the availability of epoch of data from the passive EEG. The interval
classifiers (upper two classifiers in figure 2a) would execute either on pre-
set intervals that are coordinated with expected task completions or event
driven based upon the user completing specific parts of the AVE. The result
from each classifier is used for majority voting. The category with the highest
number of votes from each time frame will be considered the current users
performance level.
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Figure 2: A: Voting based ensemble machine learning system split between conti-
nuous data and interval data. Figure 2B: Stacking based ensemble machine learning
algorithms executed with only continuous data until interval data becomes available.

Figure 2B demonstrates a stacking method for implementing the ensemble
machine learning system. At time O to 1-n in Figure 2B, the ensemble system
uses only the continuous data as predictors to determine the performance of
the user. Once active predictors become available at time n, the system swi-
tches to a stacking method in which the output from one classifier is fed into
the input of another classifier. At time n in Figure 2B, the passive classifiers
kNN and SVM identify what they believe is the correct performance level of
the user. These results are then fed in as additional predictors for the Active
classifiers and the final decision is made based upon the predictive probability
of active classifier results.

An alternative solution is the application of machine learning that employs
reinforcement learning. In this solution, the machine learning classifier uses
the passive metrics at every epoch interval to classify the user’s performance.
As the AVE receives active data the results of the passive machine learning
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and active machine learning are compared. If they are found to be equal, the
AVE continues using the same training data that it has been operating with. If
the results are not equal, then the passive machine learning classifiers model
can be updated to reflect data that better match what was measured during
a particular event recently completed within the AVE. Throughout the entire
AVE, the machine learning models would be being refined to fine tune the
data to more accurately match the users’ abilities.

CONCLUSION

In summary, we were able to identify common metrics that can be imple-
mented in virtual environments that will aid in future development of AVEs.
The framework we developed will allow for better detection of cognitive and
affective states allowing the systems to fine tune difficulty settings for each
individual user. The AVE will have the capability to accurately determine if
the user is in a state of flow and make real-time adjustments to the tasks
within the virtual environment. This results in a better user experience for
the individual and a more accurate measurement of their performance in the
environment.
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