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ABSTRACT

This study collected EEG data using a driving simulator and analyzed it using the
average spectral power density of EEG features to study the assessment method of
cognitive distraction in driving caused by central control information. The results sho-
wed that Theta, Beta1 and Beta2 brain waves in the frontal lobe and central region
could reflect the driver’s cognitive load and cognitive processes. As cognitive diffi-
culty increases, Theta and Beta2 brain waves in the frontal lobe and central region
gradually calm down, and Beta1 becomes more active. By recording the driver’s EEG
signals and analyzing changes in brain waves, the impact of in-vehicle central control
system design on driver cognitive distraction can be evaluated. This EEG-based eva-
luation method can provide a more objective and accurate assessment, providing a
scientific basis for optimizing and improving the design.
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distraction

INTRODUCTION

Driving is a complex task that requires high levels of attention and cogni-
tive processing. However, with the development of automotive technology
and demand, more and more cars are equipped with central control systems.
While central control systems can alleviate cognitive fatigue to some extent,
they can also cause cognitive distraction because of the complexity of central
control information. Cognitive distraction is a type of distraction in driving
(Pettitt et al., 2005; Greenberg et al., 2003; Lee et al., 2013; Regan et al.,
2011), which refers to the driver’s inability to drive safely or delayed reaction
time due to thinking about other issues. When drivers experience cognitive
distraction, it increases the risk of accidents to some extent (Klauer et al.,
2006). In particular, cognitive distraction caused by central control informa-
tion has been identified as an important factor in causing traffic accidents
(Sabey and Staughton, 1975).
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To address cognitive distraction while driving, researchers have been
exploring various ways to measure and assess cognitive workload. After lite-
rature review, the use of electroencephalogram (EEG) data to assess cognitive
load is a feasible method (Chin-Teng et al., 2008; Lin et al., 2011; Wang et
al., 2010). EEG signals can intuitively reflect the physiological activity of the
brain, thereby further reflecting the psychological perceptual activity of the
individual (He et al., 2010; Kannan et al., 2017; Wai et al., 2018). By analy-
zing EEG data, researchers can identify patterns of brain activity associated
with different levels of cognitive workload (Wester et al., 2008).

At present, the application of EEG research results in the field of traffic
driving behavior is relatively limited, mainly focusing on traffic safety. In the
field of intelligent transportation, the development of vehicle driver assista-
nce systems mainly revolves around monitoring the driver’s driving status
(Tian-Hong, 2007; Wang et al., 2013). In traffic flow theory, some explora-
tory studies have begun to incorporate the physiological and psychological
perception of drivers during dynamic driving as parameters into traffic flow
models (Tang et al., 2012).

In this paper, an effective driving cognitive distraction assessment method
based on EEG data is proposed, and the EEG research results are applied to
the field of traffic driving behavior, which can provide reliable and objective
cognitive workload measurement, which can be used to evaluate the impact
of different types of distractions on driving performance, and provide help
for the establishment of relevant traffic models including driver perception.

METHOD

Participants

The study involved 30 participants with an average age of 33.40 years and
a standard deviation of 6.47. All participants had a naked-eye or corrected
visual acuity of 4.9 or higher on the logarithmic visual acuity chart. Those
with monocular visual impairment had a naked-eye or corrected visual acuity
of 5.0 or higher on the logarithmic visual acuity chart in their better eye, with
a horizontal visual field of at least 150 degrees. None of the participants
engaged in fatigued driving, drunk driving, or were under the influence of
drugs during the experiment.

The collected data was divided into two groups based on the difference in
experimental purposes. The first data group consisted of subjects 1 to 20 and
was used to determine the threshold of distracted driving evaluation indica-
tors. The second data group consisted of subjects 21 to 30 and was used to
verify the usability of the distracted driving model when using touch-based
smart products.

Experimental Equipment

The driving simulation system includes a driving simulator, an environmen-
tal simulator, and a Huawei tablet as the experimental display device. The
Logitech G29 is used to connect the driving simulator to the computer, and
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the SCANeR studio software is used to model the experimental road envi-
ronment. The tablet is placed in a fixed position within the driver’s visible
range as a car-mounted touch screen for the experiment. The seat height and
screen position are set according to the distance of the actual car. The road
scene includes various road landscapes such as lane markings, traffic signs,
and greenery, as shown in Fig. 1.

Figure 1: Intelligent connected vehicle human-machine loop system interactive expe-
rimental equipment.

Task and Procedure

Task
We cognitive distraction task refers to the scenario where different letters are
displayed on the central control screen of the car during the driving process.
After the target sound stimulus appears, the subject needs to say the tar-
get sound and its occurrence frequency. The instruction release interval is 3
seconds, and the target sound accounts for 30% of the total stimuli. During
the entire experiment, the subject does not need to focus their gaze on the
central control screen. The experiment is divided into difficulty levels 1, 2,
and 3 based on the number of target sounds. In difficulty level 1, the target
sound is A; in difficulty level 2, the target sound is A/B; and in difficulty level
3, the target sound is A/B/C. Examples of the three difficulty levels of the
cognitive distraction task are shown in Fig. 2.

Procedure
The driving simulation experiment consists of three parts: experimental pre-
paration, subject driver training, and formal experiment, with a total time
of about 1 hour. In the experimental preparation stage, the subject signs an
informed consent form, and basic information is collected and equipment
functions are confirmed. The subject driver undergoes about 10 minutes of
simulated driving operation training. The formal experiment includes cogni-
tive task experiment, with the experimental order evenly distributed. To avoid
the influence of the experimental order on the data, the subject driver needs to
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Figure 2: Examples of Three Levels of Difficulty in Cognitive Distractor Tasks.

maintain a focused driving state and complete the control experiment before
the formal experiment.

Data Analysis

Firstly, preprocessing of the EEG signal is performed before EEG signal analy-
sis, which involves processing the raw EEG signal to remove noise, artifacts,
and other interference, and improve the quality and reliability of the EEG
signal. Extract the power spectral density of Delta, Theta, Alpha, Beta1,
Beta2, and Gamma for each EEG electrode channel. Divide the 18 EEG ele-
ctrodes into 6 regions: Fp1, Fp2 (Frontal pole), F3, F4, F7, F8 (Frontal),
T3, T4, T5, T6 (Temporal), O1, O2 (Occipital), C3, C4 (Central), P3, P4
(Parietal), as shown in Fig. 3. Calculate the mean power spectral density for
each type of brain wave within each region. Use repeated measures analy-
sis of variance (ANOVA) to investigate the effect of increasing task difficulty
and resulting cognitive distraction on regional brain waves. Mauchly’s test is
used to test the sphericity assumption of repeated measures ANOVA.

Result

The power spectral density of the EEG signal was divided into 36 groups of
data based on the six regions and six frequency bands corresponding to the
EEG electrodes. ANOVA was performed on the cognitive distraction experi-
ment data of 30 participants under three difficulty levels. The results showed
significant differences in the experimental data corresponding to the Theta,
Beta1, and Beta2 brain waves in the Frontal Pole and Central regions. as
shown in Table 1.

Experiment Data

A one-way ANOVA was first conducted to confirm that differences in
difficulty levels would have an effect on these metrics. If an effect was
determined, the LSD method was used to further determine the extent to
which the different levels of subtasks affected the metrics. The results of
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Figure 3: Brain electrode partitioning.

Table 1. Statistical significance table.

Delta Theta Alpha Beta1 Beta2 Gamma

Frontal pole P = 0.64 P = 0.01 P = 0.31 P = 0.02 P = 0.007 P = 0.52
Frontal P = 0.33 P = 0.21 P = 0.161 P = 0.44 P = 0.37 P = 0.104
Temporal P = 0.41 P = 0.14 P = 0.54 P = 0.305 P = 0.69 P = 0.13
Occipital P = 0.55 P = 0.36 P = 0.37 P = 0.402 P = 0.236 P = 0.64
Central P = 0.498 P = 0.008 P = 0.731 P = 0.022 P = 0.005 P = 0.511
Parietal P = 0.107 P = 0.35 P = 0.454 P = 0.313 P = 0.507 P = 0.359

the one-way ANOVA revealed a significant difference in the standard devi-
ation of lane lateral excursion by different levels of the cognitive distraction
task (p = 0.007<0.05). A post hoc test using the LSD method obtained
that there was a significant difference between difficulty one and three
(P = 0.002<0.05), a significant difference between difficulty one and two
(P = 0.005<0.05), and no significant difference between difficulty two and
three (P = 0.454>0.05), as shown in Fig. 4.

EEG Data

A one-way ANOVA was first conducted to confirm that differences in dif-
ficulty levels of the cognitive distraction experiment would have an effect
on the power spectral density of Theta, Beta1, and Beta2 waves in diffe-
rent brain regions. If an effect was determined, the LSD method was used
to further determine the extent to which the different levels of subtasks affe-
cted the metrics. The results of the one-way ANOVA revealed a significant
difference in the standard deviation of the power spectral density of Theta,
Beta1, and Beta2 waves in the frontal polar region by different levels of the
cognitive distraction task (P = 0.01<0.05, P = 0.02<0.05, P = 0.007<0.05).
The post hoc test using the LSD method for power spectral density stan-
dard deviation found that there was a significant difference between difficulty
one and two (P = 0.02<0.05), a significant difference between difficulty one
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Figure 4: Estimating the boundary mean value of lane lateral excursion.

and three (P = 0.005<0.05), and no significant difference between difficulty
two and three (P = 0.628>0.05). The different levels of cognitive distraction
also had a significant effect on the power spectral density of Theta, Beta1,
and Beta2 waves in the central region (P = 0.008<0.05, P = 0.022<0.05,
P = 0.005<0.05). The post hoc test using the LSD method for power spe-
ctral density standard deviation found that there was a significant difference
between difficulty one and two (P = 0.013<0.05), a significant difference
between difficulty one and two(P = 0.008<0.05), and no significant dif-
ference between difficulty two and three (P = 0.574>0.05), as shown in
Fig. 5.

Figure 5: Average power spectral density of frontal and central regions.

Discussion

This study investigated the effects of cognitive distraction task difficulty on
the power spectral density of six brain regions and six frequency bands
in EEG signals. The results showed that as task difficulty increased, there
were significant differences in the power spectral density of Theta, Beta1,
and Beta2 brain waves in the frontal polar and central regions, while there
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were no significant differences in other regions. Previous EEG studies have
shown that the frontal polar and central regions play important roles in many
cognitive tasks, and Theta, Beta1, and Beta2 power spectral density exhibit
different patterns of change in different cognitive tasks. However, the lack of
significant changes in other regions may be due to different brain regions pla-
ying different roles in different cognitive tasks. The cognitive distraction task
used in this study did not involve cognitive processes controlled by other regi-
ons. In addition, there were significant differences between task difficulty one
and two, and task difficulty one and three, but no difference between task
difficulty two and three. Comparing the behavioral data, this was mainly
because the difficulty of task three was set too high, and in order to maintain
the normal progress of the main driving task, the participants actively gave up
the cognitive distraction subtask, resulting in the cognitive distraction level of
task three being relatively stable or slightly increased compared to task two.
Therefore, in order to more comprehensively understand the characteristics
of EEG signals and the neural mechanisms of cognitive processes, further
research is needed to investigate the patterns of EEG wave changes in other
regions during different cognitive tasks.

CONCLUSION

According to the research results, the Theta, Beta1, and Beta2 brainwaves
in the frontal and central regions can reflect the driver’s cognitive load and
cognitive processes. This finding has significant implications for evaluating
the impact of in-vehicle infotainment system design on driver cognitive distra-
ction. Therefore, in the evaluation of in-vehicle infotainment system design
on driver cognitive distraction, electroencephalogram (EEG) recording and
analysis can be used to assess the impact of the design on the driver’s cognitive
load and cognitive processes.

Specifically, by recording the driver’s EEG signals and analyzing the chan-
ges in Theta, Beta1, and Beta2 brainwaves in the frontal and central regions,
the impact of the design on the driver’s cognitive load and cognitive proces-
ses can be evaluated. In addition, driver feedback and behavioral data can
be combined to comprehensively evaluate the impact of the design on driver
cognitive distraction. This EEG-based evaluation method can provide more
objective and accurate assessment of the impact of in-vehicle infotainment
system design on driver cognitive distraction, and provide scientific evidence
for optimizing and improving the design.
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