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ABSTRACT

Brain-Computer Interfaces (BCls) combined with Virtual Reality (VR) enable the deve-
lopment of user-aware systems for individualized learning that monitor the learner’s
current mental states and adapt content to their individual skills and needs. We investi-
gate feature set decisions extracted from functional near-infrared spectroscopy (fNIRS)
signals and its use in conventional machine learning (ML)-based decoding of working
memory. Eleven volunteers participated in a VR study using a visuo-spatial n-back
paradigm with simultaneous fNIRS measurements. Single subject and overall deco-
ding performance were compared for different feature sets including exploration of
single feature contribution and their localisation within the prefrontal cortex. Our
results prove that feature sets combining oxygenated (HbO) and deoxygenated hemo-
globin (HbR) features using a sequential feature forward selection have the highest
performance. More specifically, HbR peak-to-peak features from premotor regions
and right and mid-dorsolateral prefrontal cortex contributed most to the decoding
performance. Our results emphasise the need of analysing ML features in mental
state decoding and aim to provide empirically supported decision recommendations
to reach the next step towards future online decoding pipelines in real-world VR-based
learning applications.
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INTRODUCTION

Awareness of a user’s current mental state and customized adaptability of
a system are highly important in the development of efficient and effective
learning environments. To identify and continuously monitor individual men-
tal states, Brain-Computer Interfaces (BCIs) measuring neurophysiological
signals, e.g., with a functional near-infrared spectroscopy (fNIRS) can be used
(Fairclough, 2009; Ayaz et al. 2012). f{NIRS is a mobile optical brain ima-
ging technique that records metabolic changes in the concentrations of local
oxygenated (HbO) and deoxygenated hemoglobin (HbR). In recent years, it
has become a popular brain-imaging technique for real-world applications
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due to its good usability and mobility (Peck et al. 2014; Strait and Scheutz,
2014). Given the rapidly changing skill requirements, suitable training and
learning environments are of great importance for industrial stakeholders to
remain competitive, effective and ensure job satisfaction. In such scenarios,
Virtual Reality (VR) has emerged as a revolutionary technology to provide
an immersive, interactive, and engaging learning experience (Philippe et al.
2020). Especially when erroneous behaviour is associated with severe con-
sequences or great resources, VR offers the opportunity to explore actions
and visualizations of consequences in a safe environment and at affordable
costs. In addition, it provides an easy way to personalize educational content,
learning speed, and/or format to the individual (Philippe et al. 2020). A good
fit between learning environment and the user’s skills and needs is decisive to
promote self-motivation and, consequently, learning performance (Ryan and
Deci, 2000). By adequately integrating BCI-based mental state monitoring in
an adaptive VR learning environment, an optimal fit between the user and
system can be achieved (Lotte et al. 2012).

Related Work

In most real-world related learning applications, visuo-spatial working
memory (WM), describing the ability to process, memorize, and update an
object including its visual properties and current location (McAfoose and
Baune, 2009), is of great importance. Previous fNIRS studies investigating
brain areas associated with (visuo-spatial) WM highlighted the role of the
prefrontal cortex (PFC), especially dorsolateral (dIPFC) and ventrolateral
(vIPEC) parts (Ayaz et al. 2012; Llana et al. 2022). When recruiting the dIPFC
and vIPFC during visuo-spatial WM, local HbO concentration increases and
HDbR concentration decreases which can be measured with fNIRS (Ferrari
and Quaresima, 2012; Llana et al. 2022).

Recently, von Lithmann (2018) investigated different visuo-spatial WM
load levels using a colour-based n-back task with fNIRS. The author reported
higher discriminability between levels in the mean activation within lateral
regions of the PFC. Another research group, investigating single trial WM
load decoding with fNIRS, presented an n-back task with three levels in VR
(Herff et al. 2014; Putze et al. 2019). In their first decoding approach (Herff
et al. 2014), they used the slope of the local HbO and HbR concentrations
from time windows of 25 sec and 8 channels located over the prefrontal
cortex as feature set. They were able to discriminate 1 from 3-back trials with
an average of 78 % classification accuracy (Herff et al. 2014). In their second
approach (Putze et al. 2019), the authors modified their decoding approach
by using smaller time windows of 12 sec and combined the mean HbO and
HDbR concentration as well as the slope and coefficient of determination of
a linear regression as features for each channel. For the classification of 1
and 3-back trials, they achieved averaged accuracies of 49% in a participant-
wise classification and 66 % when pooling the data of all participants together
(Putze et al. 2019).

In single trial decoding, several approaches to extract informative features
from HbO and HbR concentrations are proposed, e.g., statistical features
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(e.g., average, peak, peak to peak, slope; see Herff et al. 2014; Putze et al.
2019) or coefficients of a general linear model (GLM; von Lithmann et al.,
2020). Hence, it is crucial to get an understanding of the selected feature
sets and how each feature contributes to the decoding (von Lithmann et al.
2021). This is especially relevant for complex environments, such as VR-
supported learning scenarios, where the underlying cognitive processes and
associated neuronal activation patterns are still the subject of research. Thus,
our goal in the current study was to investigate different statistical feature sets
extracted from fNIRS signals, their performance as well as spatial distribution
of informative channels when decoding different level of WM load during a
VR-based visuo-spatial n-back paradigm.

METHODS
Participants

11 volunteers (four female, right-handed, mean age of 23.73 + 1.42,
range = 21-26 years) participated in the study. One participant was exclu-
ded in the analysis due to a different optode montage. Prior to the study,
they were checked for sufficient German language knowledge, intact colour
vision, no self-reported drug habit, and mental, neurological, or cardiovascu-
lar disease using an online questionnaire. All participants received monetary
compensation and signed an informed consent according to the recommen-
dations of the Declaration of Helsinki. The study was approved by the ethics
committee of the Medical Faculty of the University of Tuebingen, Germany
(ID: 827/2020BO1).

Procedure

The experimental task was a colour-based visuo-spatial n-back paradigm
in VR adapted from von Lihmann (2018) with a low (1-back) and high
WM load condition (3-back) as well as an active baseline using the 0-back
condition.

In VR, participants faced a grey wall with eight coloured buttons (red,
magenta, blue, light blue, green, yellow, orange, dark grey) arranged evenly
in a circle and a coloured target number in the centre of the circle (see
Figure 1A). The number indicated the n-back level (i.e., 0, 1, or 3) as well
as target colour (i.e., grey as a default for 0-back and any other of the remai-
ning seven colours for 1 and 3-back). It remained the same over a whole
block and was presented at the beginning of the block 6 sec before the start
of the task. The colour of each button changed trial-wise within the block
and participant had to perform the n-back in each trial of 6 sec using the
target colour and n-back level. Hence, they compared each trial whether the
position of their target colour was the same as n trials before (true n-back)
or not (no n-back). In case of a true n-back, they had to press the target
colour button with their right hand. In the other case (no n-back), they had
to press the grey coloured default button. The experiment consisted of 12
rounds (see Figure 1C). Each round comprised of 4 blocks and 48 trials. It
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Figure 1: A) Task environment in VR (here: 0-back with grey as target colour). B) Optode
montage with 15 sources (red circles), 14 detectors (blue circles), and 8 short channels
(blue ring around red sources) covering the PFC. Regions-of-interests, that are the left
and right dIPFC, mid-dIPFC and premotor cortex, are defined via coloured squares. C)
Block design with 12 rounds & 4 blocks of the visuo-spatial n-back (see von Lihmann
et al., 2018).

started with a 30 sec resting state recording followed by an alternating pat-
tern of active baseline using a 0-back (6 trials with target colour grey) and
randomly selected either 1- or 3-back block (18 trials). At the end of a round,
participants, rated their perceived stress, frustration, and concentration using
adapted subscales of the NASA TLX (Hart and Staveland, 1988).

Data Collection

A HP Reverb Glwith a per-eye resolution of 2048 x 2048 pixels and refresh
rate of 90 Hz was selected as VR hardware. It was preferred over others
because of 1) less infra-red-light interference with the fNIRS compared to
systems using first and second-generation Lighthouse base stations, 2) visible
instead of infrared light positional tracking of controllers, and 3) a smaller
head strap facilitating fNIRS optode montage over the PFC (see Figure 1B). A
NIRx NIRSport2 system and the Aurora recording software! with a sampling
rate of 5.8 Hz were used to acquire fNIRS signals.

We utilized three programs synchronized via Lab Streaming Layer (LSL;
Kothe et al. 2019) to run the experiment: (1) a Unity program presen-
ting the n-back paradigm and sending triggers to the other programs, (2)
the Aurora recording software, and (3) a Python script saving experimental
meta-information and behavioural data recorded by the controllers.

https://nirx.net/software
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Signal Processing

All analyses were performed in Python 3.8 using MNE-Python (Gramfort
et al. 2013, version 1.2.), MNE-NIRS (Luke et al. 2021, version 0.4.), and
scikit-learn (Pedregosa et al. 2011, version 1.0.2). The recorded fNIRS raw
signals were first converted to optical density followed by channel pruning
using the scalp-coupling index and a threshold of below 0.5 (Gramfort et al.
2013; Yucel et al. 2021). To account for baseline shifts and spike artifacts, a
temporal derivative distribution repair was applied (Fishburn et al. 2019). In
the next step, optical density was transformed into HbO and HbR concentra-
tion changes via the modified Beer-Lambert law (partial path-length factor:
6; Luke et al. 2021) and signals filtered with a 4™ order zero-phase infi-
nite impulse response (IIR) Butterworth band-pass filter (cut-off: 0.05-0.7
Hz; transition bandwidth: 0.02-0.2 Hz). To decode WM load, we extracted
short epochs of 4 sec duration. An epoch rejection threshold of a peak-to-
peak amplitude above 80 M was applied to account for further artefacts. To
avoid an imbalanced distribution of classes in the decoding, epochs of the two
conditions were equalized resulting in an average number of 208.8 + 12.6
(range: 180 to 216) epochs per participant.

Decoding of Working Memory Load

From each epoch we extracted statistical features of HbO and HbR concen-
tration per channel. Features included: peak, minimum, average, slope,
peak-to-peak (peak2peak), and time-to-peak (time2peak). A Linear Discrimi-
nant Analysis (LDA), Support Vector Machine (SVM) and Gradient Boosting
classifier (XGBoost, xgboost, version 1.7.2) were applied participant-wise
and feature-set-wise. The analysis pipeline comprised of a nested 5-fold cross-
validation (CV) with 20 repetitions, z-standardization of features, and a grid
search to optimize hyperparameters (LDA: solver, SVM: C, xgBoost: learning
rate, max_depth, subsample, n_estimator). Decoding performance was stati-
stically evaluated using the area under the receiver operating characteristic
curve (AUC ROC) and non-parametric bootstrapping (5000 iterations) over
CV folds of a participant. Average performance and its 2.5th and 97.5th
confidence interval (CV) were obtained from the bootstrapped values and
compared to an empirical chance level (i.e., bootstrapped mean performa-
nce of dummy classifiers trained participant-wise). Results were visualized
in boxplots with notches within the boxes representing the upper and lower
boundaries of the 95% CI of the mean (orange line), boxes comprising 50%
of the distribution and whiskers indicating the 5 and 95 quantile of the
distribution.

To investigate which cortical regions contributed to the decoding for each
feature set, we extracted the coefficients of a typically chosen linear classifier
for NIRS decoding, that is the LDA. Coefficients of each feature set were ave-
raged across participants and visualized on a 3D brain surface. This analysis
was limited to the HbO statistical feature because it is assumed that a) effects
in the HbO and HbR concentration changes are correlated (Ferrari and Qua-
resima, 2012; Yicel et al. 2021) and b) HbO effects are better to interpret
due to their positive relationship with neuronal activation. In a last step, we
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Figure 2: Decoding evaluation using AUC ROC. Average performance across partici-
pants for the A) HbO and B) HbR statistical feature sets. Single subject performance
using all C) HbO and D) HbR feature sets.

explored optimal feature set size and combination by performing a sequen-
tial feature forward selection (mlxtend, version 0.21.0) with a maximum of
k = 20 features using the combined statistical HbO and HbR feature sets.

RESULTS

Classification performance of all feature sets except of slope in combination
with a LDA (HbO and HbR) and SVM (HBR), was significantly above cha-
nce level decoding (see Figure 2). The empirical chance level was estimated
by a dummy classifier at 50.04% (95% CI [49.9; 50.17]). When comparing
the classifiers, peak2peak difference of the HbO and HbR amplitude as well
as the combined feature sets yielded in the high accuracies for all three clas-
sifiers. For the other feature sets, we observed minor differences between the
linear classifiers LDA and SVM. There was a noticeable difference between
SVM and LDA to xgBoost when using the HbO and HbR average, slope
and time2max as feature sets. For the slope and time2max, xgBoost accuracy
was the highest indicating that a set reduction via feature selection performed
by the tree-based algorithm is beneficial. When using all HbO feature sets,
we observed significant above chance level in all participants with average
accuracy of 70.41% [69.92; 70.86] for the LDA (SVM: 70.41[70.49; 71.39];
xgBoost: 66.9 [66.42; 67.47]). For all HbR feature sets, average accuracy was
73.22 % [72.72; 73.66] for the LDA (SVM: 72.65 [72.14; 73.13]; xgBoost:
71.09 [70.53; 71.63]).

When examining the LDA coefficients (Figure 3), the average and max
HbO feature sets revealed a similar spatial pattern of informative cortical
regions. Higher amplitudes in left frontopolar, dorsolateral, premotor regi-
ons as well as in regions of the left motor cortex related to right hand and
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Figure 3: A) Projections of the LDA coefficients per feature set on 3D brain images.
Class 0: Low WM Load; Class 1: High WM Load. B) Single subject performance per
feature set.

arm movements were associated with the high WM load class (1). Interestin-
gly, coefficients of channels over the left motor region were particularly large
when using the min HbO feature set. Epochs with high average and maximum
HbO concentration as well as a small peak-to-peak difference in right dor-
solateral regions were allocated to the low WM load class (0). For the slope
and average feature set, we observed below chance level classification perfor-
mance in seven (slope) and three (time2peak) out of ten subjects rendering
the classifier coefficients as difficult to interpret and less meaningful.

The SFS approach using all HbO and HbR feature sets with a maximum
of 20 features revealed that the maximal set size of k = 20 led to the highest
mean classification accuracy of 85.49 % [84.82; 86.1] (Figure 4). Especially
HbR peak-to-peak features from premotor regions as well as the right and
mid dIPFC were selected (Figure 5), followed by HbO peak-to-peak features
from premotor regions, average HbO from the left dIPFC and HbR time-to-
peak and max features from premotor regions (Figure 3).
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Figure 4: A) Relationship between LDA performance and feature set size with k featu-
res. B) Single subject classification performance using the SFS optimized feature set
and k = 20.
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Figure 5: A) Count per selected features across participants divided into region of inte-
rest, as defined in Figure 1B), and statistical feature. B) 3D brain projection of counts
per selected feature, i.e., channel per chromophore (HbR and HbO) and statistical
feature set, across subjects.

DISCUSSION

For the development of robust decoding, knowledge about relevant features
underlying cognitive processes and their selection can profoundly affect per-
formance for everyday BCI applications and, thus, need to be systematically
investigated (von Lihmann, 2021). We contributed to this knowledge by exa-
mining effects of HbO and HbR feature set selections in WM load decoding
within a VR-based visuo-spatial n-back paradigm. We could obtain the high-
est average decoding performance for a combined HbO and HbR feature set
with optimized feature selection via SFS (85.49 % [84.82; 86.1]; Figure 4B).
The performance even exceeded previously reported WM decoding results
(Herff et al. 2014; Putze et al. 2019). Single statistical feature sets, e.g., choo-
sing only the slope per channel, yielded in rather low and below-chance level
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decoding performance. Interestingly, HbR-related features contributed the
most to our SFS-based decoding (Figure 5A). These chromophore-dependent
differences in channel contribution need to be further investigated to iden-
tify potential effects of systemic physiological artifacts or non-stationarities
(Unni et al. 2017). We did not detect a systematic contribution of any particu-
lar region or hemisphere to the decoding performance. Informative channels
were rather spatially distributed throughout the PFC. We observed rather
strong contribution from channels positioned over the premotor cortex that
can be explained by the nature of chosen task requiring a motoric response.
Further analyses are needed to systematically study the relation between
task-related motoric behaviour and the HbO and HbR concentrations in
channels over the premotor cortex as well as their contribution to the WM
load decoding. Motoric differences between conditions should be excluded
to guarantee sound WM load decoding. Our dataset allows to relate the pre-
motor cortex activation to the time point of first button press as well as
head acceleration within each trial. However, acceleration of the control-
lers during the experiment was not continuously recorded which we would
highly recommend for future studies. Beside the feature set, further para-
meters such as window length strongly influence classification. Contrary to
previous studies (Herff et al. 2014; Putze et al. 2019), we selected a short
time window for each trial similar to non-overlapping windows within a
block. Although rather larger time windows are suggested for fNIRS deco-
ding (Putze et al. 2019), we chose rather shorter window size to avoid
possible signal distortion due to motoric behaviour at the end of each trial
and to obtain many data samples per class. Rationales for our decision were
that, even in shorter windows, activation patterns of the induced WM load
should be established after n-trials without any recovery to the baseline betw-
een trials of the same block so that statistical features should significantly
differ between low and high load. However, we plan to analyse and com-
pare block-wise decoding performance. To proceed towards future everyday
world BCI applications, to extend the decoding to more than two WM load
levels. One major challenge when using multiple levels or even a continu-
ous scale is to acquire enough data in each class or level. Research on data
augmentation is promising to address this challenge (Eastmond et al. 2022;
Rommel et al. 2022).

In summary, insights of our study highlight the importance of feature
set exploration for the development of everyday world BCI applications in
neuro-adaptive VR learning environments.
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