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ABSTRACT

Industry 4.0 is the tendency towards automation and data exchange in manufactu-
ring and the process sector. However, many manual material handling and repetitive
operations can still cause the operators fatigue or exhaustion. Once the operator
experiences physical fatigue, their performance decreases. The consequences may
result in reduced production quality and efficiency and increased operational human
errors that could give rise to incidents and accidents. Over time, physical fatigue can
result in more adverse effects for the operators, such as Chronic Fatigue Syndrome
(CFS) and Work-related Musculoskeletal Disorders (WSMD). For this reason, from an
occupational health and safety point of view, the operator’s physical fatigue must
be managed. The increasing availability of wearable devices combined with health
information can provide real-time measuring and monitoring of physical fatigue in
the operational environment while minimally influencing the primary job. This paper
presents a physiological signal-based approach using a non-intrusive wristband for
continuous health monitoring to predict physical fatigue in industrial-related tasks.
These data are used as input to classification algorithms to detect physical fatigue.
Accurate and real-time physical fatigue detection helps to improve operator safety and
prevent work accidents. Future work will deploy the model in a real-world environment
in the industry.

Keywords: Classification algorithms, Human performance modelling, Industry 4.0, Physical
fatigue, Physiological parameters, wearable sensors

INTRODUCTION, BACKGROUND AND LITERATURE REVIEW

Industry 4.0 is the current trend of using advanced technologies such as IoT,
Al and robotics in industrial settings to improve automation, analysis, and
maintenance efficiency (Rubmann et al. 2015). However, the human factor
cannot be ignored as it directly impacts production and safety performance.
For example, operators who have not trained adequately or are stressed or
fatigued can make mistakes or errors that disrupt production, lead to delays
and even accidents or injuries. Therefore, considering the human factor and
implementing measures to minimize the risk of errors is essential to enhance
the safety and effectiveness of production operations (Albarran Morillo et al.
2022). Despite technological advancements and automation, much manual
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material handling and repetitive operations, such as lifting, pushing, pulling,
and carrying a load, can still cause operators fatigue or exhaustion. These
tasks can be physically and mentally challenging and strain workers, leading
to fatigue, harm, and other health problems. Fatigue is a decline in men-
tal and/or physical performance caused by excessive working time or poorly
designed shift patterns (Sharpe, 1991). There are two main types of fatigue,
physical and mental. Physical fatigue is tiredness or exhaustion caused by
physical efforts, such as lifting heavy objects or working long periods. Men-
tal fatigue is a feeling of tiredness or exhaustion caused by mental exertion,
such as solving complex problems or making decisions. Both physical and
mental fatigue can have severe consequences for workers, affecting their per-
formance, safety, and well-being (Yung et al. 2016). Therefore, it is essential
to identify and manage workplace fatigue to prevent accidents and ensure
workers perform at their best. The related work focuses on physical fatigue,
a critical and common issue in industrial environments due to high-demand
tasks and long duty times. Manufacturing, construction, or mining wor-
kers must perform physically demanding tasks for long periods, leading to
physical fatigue. Short-term effects of physical fatigue can result in distress,
decreased physical capacity, and reduced motor control. These effects have a
range of negative consequences, including increased accidents, reduced per-
formance, and deficits in work quality (Cavuoto and Megahed, 2016). Over
time physical fatigue effects can develop into more adverse health outcomes
(Yung et al. 2016), such as Chronic Fatigue Syndrome (CFS), work-related
musculoskeletal disorders (WMSD) and decreased immunological function.
CFS is a medical condition characterized by severe and persistent fatigue that
is not improved by rest and can have various physical and mental symptoms.
WMSD are a group of conditions that affect the muscles, tendons, and other
delicate tissues, caused by repetitive or harsh physical activities leading to
pain, immobility and other symptoms. Chronic fatigue can also reduce immu-
nological function, making the body more vulnerable to infections and other
health problems (Yung et al. 2016).

Studies have shown that physical fatigue and related health issues such as
WMSDs have high financial costs (Yung et al. 2014). These costs include
lost productivity due to absenteeism and increased medical expenses for tre-
ating injuries. These issues are estimated to cost billions of dollars annually
worldwide.

Based on the overhead discussion, the researchers must study the conditi-
ons that cause physical fatigue to develop strategies for detecting, measuring,
and handling it (Kumar, 2001). Fatigue is a subjective feeling, and the level of
fatigue an individual experiences differs depending on factors such as overall
health and well-being, job demands, and circumstances. Researchers often
rely on self-reported measures of fatigue, such as the “Rated Perceived Exer-
tion (RPE)” or “Borg test,” which is a tool that measures an individual’s
perception of their physical exertion (Borg, 1982). The scale ranges from
6 to 20, with 6 indicating no exertion and 20 indicating maximum exer-
tion. This method is subjective and might be influenced by factors such as an
individual’s mood or willingness to report fatigue accurately. Additionally,
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these methods are typically limited to laboratory environments and may not
provide real-time results in real-world settings.

There are alternative methods for measuring a person’s level of exer-
tion, such as posture and musculoskeletal stress analysis. However, these
methods have limitations, such as real-time feedback and the need for trai-
ned personnel to perform the measurements accurately. Some examples of
these strategies include the Posturegram, Ovako Working Postured Analyzing
Systems (OWASA) and the Rapid Upper Limb Assessment (RULA).

Wearable technology has come a long way in recent years. It is now possi-
ble to use devices like smartwatches and fitness trackers to monitor various
physiological signals, such as heart rate, body temperature, and brain activity.
Wearable technology is used in diverse industrial and professional settings to
monitor the internal state of operators, such as in the aviation and health-
care industries. In addition, the increasing availability of wearable devices
that collect physiological responses has the potential to provide real-time
monitoring and measuring of the consequences of physical fatigue in real-
life environments (Kim and Nussbaum, 2013). This data-driven analysis uses
sensors to collect the physiological signal changes in the body and estimate
an individual’s level of fatigue via machine learning algorithms.

Despite the ample use of wearable devices in physical fatigue monitoring
and prediction, the applications are restricted to three disciplines; monitoring
athletes, driver sleepiness detection systems in transporting and sleep-induced
exhaustion in mining. In other physically demanding domains, such as the
manufacturing and process sector, the number of applications related to
physical fatigue detection is limited. This is due to the need for precise guide-
lines or regulations regarding their use in these settings. From an exhaustive
literature examination on the use of wearable devices for physical fatigue
detection in industrial environments, 574 papers were retrieved. Several
databases, including Google Scholar, Web of Science, ScienceDirect, Scopus
and PubMed, were examined using keywords such as physical fatigue, exh-
austion, sensor, wearable, detection, manufacturing, process industry and
chemical engineering. The final inclusion criteria were: studies related to phy-
sical fatigue exclusively, forecasts or classifications that collect biometrical
signals and the study’s publication in a peer-reviewed journal or conference
proceedings after 2010.

Eleven articles were included in the review on physical fatigue detection in
industrial environments (see Table 1).

The associated literature mainly utilizes pervasive sensors such as IMUs
and heart rate monitors to understand an individual’s physical fatigue levels.
They also employ EMG sensors and motion capture data to predict fatigue
by analysing movement patterns and speed changes. Studies focus on three
simulated industrial tasks involving manual material handling, supply picks
up and insertion, and parts assembly, to provoke physical fatigue. Worker
physical fatigue quantification is divided into two main groups, classifica-
tion and forecasting. Classification studies aim to develop models that can
accurately assign a fatigue level to a worker based on their physiological or
behavioural data. In contrast, forecasting studies aim to predict future fatigue
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Table 1. Physical fatigue quantification using wearable devices in industrial settings.

Study Fatiguing Task Devices Input data Modeling approach
(Nagahanumaiah Pick and Place task  BioHarness HR, RES, RE, SVM
et al. 2022) (chest-strap), EMG
Myo armband
(Sedighi Maman Supply Pickup and ~ Not stated IMUs, HR, LogR, SVM, RE, RF
et al. 2020) Insertion Task (SPI), Borg RPE with bagging, RF
Manual Material with boosting
Handling (MMH)
(Nasirzadeh et al. Part Assembly Task  Polar CR800X Borg RPE, KNN, NV, DT, RF,
2020) (PA), SPI, MMH HR RL NN, LR, LogR,
LDA
(Hernandez et al. MMH Hexoskin ®Shirt, Borg RPE, LSTM, GRU, PCA
2020) Hexoskin ®Smart 3D motion
Device, Qualisys
cameras
(Narteni et al. 2022) MMH 2 Borg RPFE,  LLM, DT, NN,
IMUs, HR SVM, XGBoost
(Escobar-Linero PA, MMH, SPI Shimmer3 IMUs NN
et al.2021)
(Sedighi Maman PA, MMH, SPI Shimmer3, Polar IMUs, HR, LASSO model with
etal. 2017) CR800X Borg RPE RUS sampling
(Baghdadi et al. MMH Shimmer3 IMU, Borg SVM with RBF
2018) Rate
(Lambay et al. 7 7 7 LSTM
2021)
(Lambay et al. 2022) MMH Not stated IMUs, HR, DT, RE, GB, NB,
Borg RPE KNN, LogR, SVM
(Hajifar et al. 2021) MMH Not stated IMU, Borg Naive method, AR,
RPE VAR, VECM,
ARIMA

HR, heart rate; RES, respiration; EMG, electromyography; IMUs, inertial measurement units; RPE, Rate
of Perceived Exertion); RE, Random Forest; LLM, Logic Learning Machine; DT, Decision Tree; NN,
Neuronal Network; SVM, support vector machines; XGBoost, eXtreme Gradient Boosting; KNN, k-
nearest neighbors; NV, Naive Bayes; R, Rule Induction; LR, linear regression; LogR, logistic regression;
LDA, linear discriminant analysis; LSTM Long Short-Term Memory; GRU, Gated Recurrent Unit; PCA,
Principal component analysis; LASSO, Least Absolute Shrinkage and Selection Operator; RUS, Random
Under Sampling; RBE, radial basis kernel function; GB, Gradient Boosting; AR, autoregressive; VAR,
Vector autoregression; VECM, vector error correction model; ARIMA, autoregressive integrated moving
average.

levels using historical data. There are several limitations to the studies that
should be acknowledged:

« Most of the tasks used to produce physical fatigue in participants may
be perceived as uninteresting by some individuals, affecting experiment
results and the accuracy of self-reported ratings of perceived exertion.
To reduce this potential bias, researchers must consider looking for
more pleasurable exercises for their experiments and keeping participants
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motivated and engaged, providing more accurate and reliable data on
physical fatigue.

. Small datasets limit the training of a deep neural network by reducing
variability in the data, making it hard to detect patterns and leading to
biases in the analysis and conclusions. Depending on the dataset small
sample size may also make it difficult for the model to generalize to new
examples, resulting in poor performance on unseen data.

« The conditions and variables in a controlled laboratory setting may dif-
fer from those in a real-world environment. As a result, it is difficult to
determine whether the differences observed in a study would be practically
significant in field applications.

. While several studies have shown that certain demographic factors, such
as age and gender, can influence an individual’s likelihood of experiencing
fatigue, it is unclear how these factors affect an industrial environment. In
industrial conditions, many other aspects also contribute to fatigue, such
as the type of work being conducted, the length of shifts, and the level of
physical requests.

« In binary classification, there are only two possible levels or categories
(e.g., “fatigued” and “not fatigued”). However, this approach must be
more complex and adequately capture the full range of fatigue levels.
Contrastingly, a multi-level classification with 3 or 5 levels allows for a
more granular and comprehensive assessment of fatigue. For example, a
3-level classification might include “low,” “moderate,” and “high” levels
of fatigue, while a 5-level classification could include “very low,” “low,”
“moderate,” “high,” and “very high” levels of fatigue.

« Physical fatigue modelling often involves complex mathematical and stati-
stical techniques that are difficult to implement and interpret, especially in
industrial settings with restrictions on data availability, computing resou-
rces, and personnel. As a result, some industries prioritize simplicity and
ease of use over higher performance.

Across the board, classification models’ relative simplicity and flexibility
make them a more practical and accessible choice for many organizations.
This paper deploys a theoretical approach to classify worker physical fatigue
employing multi-levels with three and five levels instead of binary classifica-
tion. Binary classification increases detection accuracy but detects physical
fatigue only after fatigue which could result in accidents or other adverse
outcomes. The framework developed is based on subjective and objective
measures as input for the classification algorithms.

The following sections of the article provide a comprehensive breakdown
of the classification framework proposed. The methods and techniques uti-
lized in the framework, along with any assumptions or limitations, are
described in detail. Finally, the article includes examples of how the fra-
mework can be implemented with various types of data and real-world
scenarios, as well as an evaluation of the proposed approach’s strengths and
weaknesses.
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PROPOSED METHOD FOR PHYSICAL FATIGUE MANAGEMENT

In this work, we developed an automatic physical fatigue detection frame-
work that uses physiological signals from wrist-worn devices. The approach
can be applied to daily life using unobtrusive devices that operators can wear
in their regular tasks. The instrument does not interfere with the operator’s
ability to perform their job in an industrial setting. Instead, the appro-
ach extracts features from heart and breath activity, skin conductance and
temperature, and accelerometer signals. Then, the framework classifies phy-
sical fatigue with three and five levels from these features by employing
classification algorithms. Our work addresses four major research issues:

« The computing of multiple physiological signals features to indicate the
correlation between data and internal physical fatigue.

« The performance of multi-level fatigue classification of physical fatigue
with three and five levels.

« The performance of the system using different numbers of inputs and
identifying the configuration that produces the best results.

« The comparison of person-specific and general models.

A conceptual framework was designed (see Figure 1) to explore these rese-
arch hypotheses and explain how the analysis is expected to contribute to
classifying physical fatigue.

Phase 1: Data Collection

The device selected to collect real-time physiological data is the Empatica
EmbracePlus, a smartwatch. It is generally considered a less intrusive weara-
ble device in industrial environments than others because it is designed to be

Phase 4: Model development

Phase 1: Data collection Hyperparameter
tuning Classification physical
\ ‘lf fatigue:
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Phase 3: Data pipeline
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Figure 1: Overall flowchart of the proposed model.
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discreet and unobtrusive, with many featuring slim, sleek designs that are less
likely to attract attention. The approach exploited heart and breath activity
data from the PPG sensor, skin conductance data from the EDA sensor, and
accelerometer and temperature data.

The model developed to classify physical fatigue will be first trained and
tested using data that reflect the physical demands of the tasks being per-
formed and the characteristics of the workers. In order to develop a robust
physical fatigue classification model, it is crucial to have a comprehensive and
representative dataset. To obtain such a dataset, we will set up a controlled
environment in a gym specifically designed to mimic the repetitive motions
commonly seen in various industrial settings. By collecting data on partici-
pants performing these repetitive motions while wearing the wearable device,
we will gather a large amount of data on various factors related to fatigue,
such as physiological signals and self-reported fatigue levels. This dataset will
then be used to train and evaluate the model, which will ultimately deploy in
real-world industrial settings.

Phase 2: Patterns in the Data Collection

Physiological data collected during physical activity can reveal patterns that
change as the body fatigues. These changes can be used to understand
the body’s response to fatigue and to monitor physical performance. Some
changes that may be observed include heart rate, respiration rate and skin
temperature increase. The specific changes observed in physiological data
during physical fatigue will depend on the specific characteristics of the indi-
vidual being monitored. Individuals have different physiological responses
due to age, fitness level, and genetics. Weka software will apply Simple
K-means clustering for combined and individual datasets to compare and
interpret the results. Combined datasets will identify common trends and
patterns that indicate physical fatigue.

Phase 3: Data Pipeline

The physiological data is collected over time as a series of measurements
taken at regular intervals. This type of data is known as time series data.

The data is preprocessed onboard the device. Any missing data will be
imputed employing linear regression techniques.

As a first step in analyzing the data, employing feature extraction and
reduction techniques is standard practice. These techniques extract mea-
ningful information from large and complex datasets and simplify the data
by reducing its dimensionality. This makes the data easier to analyze and
understand

Lastly, a normalization process is a practical step for handling the effect
of different participants’ physiology on the absolute signal values in the lear-
ning dataset. Normalization should typically only be applied to the training
dataset, not the test or validation datasets.

Phase 4: Model Development

We will divide the data into training and testing sets after collecting data in
a controlled gym environment, including feature extraction and reduction
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techniques. The training set is used to train the machine learning model, and
the testing set is used to evaluate the model’s performance. Once the model
is trained and tested on the gym dataset, it can be evaluated on unseen data
from practical situations. This can be done by collecting data from real-world
scenarios, such as an assembly line in a manufacturing plant, and using it to
test the model. Metrics such as accuracy, precision, recall, and F1-score will
be employed to evaluate the model’s performance on the different datasets.
Hyperparameter tuning is used when training machine learning models to
optimize their performance. To perform hyperparameter tuning, a range of
possible values for each hyperparameter is defined, and then the model is trai-
ned and evaluated using different combinations of these values. They include
learning rate, number of hidden layers, and regularization strength.

One potential avenue of research involves training models using diffe-
rent combinations of inputs and comparing their performance. It can help to
identify which modalities (inputs) are most complementary and how they can
be combined to achieve the best performance. For example, a single-factor
analysis of variance (ANOVA) test will be run to understand the significance
of using a single sensor (input) versus multiple sensors.

Another line of research includes comparing the model’s performance
using different classification levels, such as binary, 3-level, and 5-level classi-
fication. While a binary classification scheme may result in higher accuracy, a
3-level or S-level classification scheme can represent the underlying physical
fatigue state.

Algorithm Selection: Deep neural networks (DNNs) can be used with phy-
siological data to classify physical fatigue. DNNs are particularly well-suited
to time series data, such as physiological data, because they can learn tempo-
ral patterns in the data. A combination of Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and fully connected layers will
be selected. In practice, trying out a few different architectures and combi-
nation layers is necessary to find the one that works best for this particular
task. One novelty of the model is incorporating Bayesian inference into the
deep learning structure to use them as a part of the architecture. It could use
Bayesian variants of popular neural network architectures, such as Bayesian
Recurrent Neural Networks or Bayesian Convolutional Neural Networks.
These architectures would incorporate Bayesian methods, such as Markov
Chain Monte Carlo sampling or Variational Inference, to learn the model
parameters while incorporating prior knowledge or uncertainty in the predi-
ctions. This approach leads to more robust and interpretable models that
better handle uncertainty and missing data. Finally, we will compare the
results using standard DNNs and DNNs with Bayesian networks with the
same dataset.

POTENTIAL CASE STUDIES

The machine learning model for physical fatigue detection can be utilized in
a broad range of real-world situations, including;:

« Industrial environments: The model can be used to monitor the physi-
cal exertion of workers in manufacturing and assembly line environments
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and to predict and prevent injuries caused by repetitive motions or heavy
lifting.

. Construction sites: The model can be utilized to monitor the physical
exertion of workers in construction sites.

. Sports and fitness: The model can be exploited to monitor the physical
exertion of athletes and fitness enthusiasts and to predict and prevent
injuries caused by overtraining or improper exercise form.

The model’s performance might be affected by real-life scenarios, such as
different lighting conditions, noise levels, and temperature, so it is required to
continuously monitor and improve the model to account for these variations.

A potential case study for using the physical fatigue model in Iveco, an
Italian industrial vehicle manufacturer, could involve monitoring the physical
exertion of assembly line workers to predict and prevent injuries. Assembly
lines in the automotive sector are a suitable choice for testing the physical
fatigue detection model due to workers’ repetitive motions and heavy lifting,
which can lead to physical fatigue and injuries. Also, assembly lines are a
common and relevant scenario in many industries, not just the automotive
sector. We will employ the physical fatigue model to analyze the data and
predict the risk of injury for each operator. Based on the predicted risk of
injury, match operators to workstations where their physical exertion levels
are best suited. For example, operators with a lower predicted risk of injury
would be matched to more physically demanding workstations. Operators
with a higher predicted risk of injury would be matched to less demanding
workstations.

CONCLUSION AND LIMITATIONS

The proposed physical fatigue model opens up many future research and
development possibilities. Some potential areas of future work include:

« Real-world validation: Implementing the model in the different industrial
sectors and case studies to demonstrate its practical value.

. Improving generalizability: Addressing the model’s limitations by col-
lecting a more diverse dataset representing the physical demands and
population.

« Combining with other data: Incorporating other data types such as phy-
siological, biomechanical, and psychological data to improve the model’s
accuracy and reliability.

. Improving the Model: Experimenting with different Machine Learning
algorithms and architectures to improve the model’s performance.

The proposed physical fatigue model has the potential to impact industrial
safety and productivity significantly, but further research and development
are needed to realize this potential fully. The approach has limitations and
should be acknowledged. When evaluating the limitations in the model con-
structed utilizing training data obtained from gym-goers, it is essential to
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note that the model may only partially replicate the physical demands of
real-world scenarios, showing limitations in the model’s ability to generalize
to these scenarios. Another limitation is that the model is based on supervised
learning, which requires labelled data. It is also crucial to consider the ethical
implications of using data collected for this study. The data must be collected
with informed consent and kept confidential and anonymous. Finally, the
cost-benefit of implementing such a model should be considered, as the data
collection and model training can be expensive. Therefore, it is indispensable
to ensure that the benefits of the model, such as increased safety, productivity,
and cost savings, outweigh the costs.
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