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ABSTRACT

The advancement of low-cost and highly portable physiological systems presents
promising opportunities for monitoring human cognitive processes during daily-life
activities and more complex tasks such as operating an aircraft. The Muse 2 system
combines electroencephalography (EEG) and photoplethysmography (PPG) sensors
allowing the extraction of neural dynamics features in the time and frequency domains
and heart rate. In a study, we equipped five pilots with the Muse 2 system while they
performed a low-load and high-load traffic pattern task along with a passive auditory
oddball task. The group-level analyses revealed that participants exhibited higher ave-
rage heart rate, lower power spectrum density in the alpha band, decreased P300
amplitude in the high-load compared to the low-load condition. These results are in
line with previous laboratory research conducted in highly controlled settings and
research-grade instrumentations. The classification of the two levels of mental wor-
kload reached 93.2% accuracy on a single-trial basis based on EEG frequency features.
Post-hoc analysis revealed that the classifier mainly relied on motion artefact featu-
res in the beta and gamma bands. The classifiers using heart rate and ERPs features
reached 76% and 77.8% classification accuracy, respectively. Despite its interest, this
system presents some limitations for mobile and neuroergonomics applications nota-
bly with regards to the limited number of electrodes preventing the use of advanced
signal processing techniques to address noise and artifacts in the signals.
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INTRODUCTION

Pilots are subjected to high levels of cognitive effort during flight, which can
adversely affect their performance and safety (Callan et al., 2018). Currently,
the assessment of mental workload is typically based on subjective measures
such as self-report questionnaires. These methods have limitations, inclu-
ding low reliability and the inability to provide real-time data. Behavioral
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measures provide direct measures of performance that can be leveraged
for the implementation of assistive Human-Machine Interfaces approaches.
These measures may however not be recorded during flight segments such
as the cruising phase, where very few actions are performed. Using obje-
ctive measures of mental workload derived from physiological signals would
allow for circumventing these limitations (Fairclough et al., 2005). For insta-
nce, heart rate and its variability (Scannella et al., 2018) have been used as
proxies to assess mental efforts.

There has also been considerable interest in Neuroergonomics research
to use brain measures like electroencephalography (EEG) as a more direct
way to probe the deployment of human operator’s cognitive resources (Fai-
rclough et al, 2020, Dehais et al, 2020a). A classical approach has been
to extract specific frequency-domain features to account for mental effort
(Borghini et al., 2014, Belkhiria et al, 2020). Alternatively, time-domain
analyses of EEG signals can also be used to detect transient changes in mental
workload using probing techniques. For instance, the volunteers’ electro-
physiological response to an auxiliary auditory oddball task, in which are
presented among frequent standard distractors, is assessed. The rare/target
auditory stimuli are known to evoke a positive deflection around 300 ms
(the “P300” Event-Related Potential). The amplitude of the P300 has been
shown to index the resources allocated to the selective attentional proces-
sing of task-relevant information. Following a principle of limited pool of
attentional resources, the amplitude of the P300 is adversely affected when
cognitive resources have to be distributed across different tasks performed
jointly. As such, P300 amplitude can be used as an indirect index of the level
of mental workload as its amplitude is assumed to decrease when the primary
task demands increase (Roy et al. 2016a, Roy et al. 2016b, Brouwer et al.,
2012). Most of the previous studies were conducted with costly and bulky
wet-electrodes research-grade EEG systems that prevent their use for every-
day operation (Somon et al., 2022b). As sensors become ever more portable
and less intrusive, they offer new perspectives for neuroergonomics applica-
tions (Dehaisb et al., 2020). For instance, several studies in simulated and
real-flight conditions have successfully shown the potential of wireless dry
EEG systems to detect critical operators’ states (Dehais et al., 2020b, Dehais
et al., 2018, Callan et al., 2018, Scholl et al., 2016) even with very few electro-
des (Dehais et al, 2022, Somon et al., 2022a, Dehais et al., 2019, Getzmann,
2021).

In recent years, the development of neurotechnological hardware has led
to an expanding range of low-cost devices, such as the Emotive, Dreem,
OpenBCI and the Muse system, aiming at everyday life applications (health,
entertainment, domotic...) The Muse-2 system comprises five EEG electro-
des (including a reference electrode) and a photoplethysmography (PPG)
sensor enabling an optical-based measure of heart rate. Several studies indica-
ted the potential of these unobtrusive devices for mobile research (Cannard,
Wahbeh & Delorme, 2021, Krigolson et al., 2021, Krigoloson et al., 2017)
and the development of brain-computer interface (BCI) as shown by Simar
et al., (2020). These studies were however conducted in controlled laboratory
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environments and during tasks where subjects’ movements were limited. The-
refore, there is a need to benchmark these sensors in applied contexts where
users are freely engaged in ecologically valid tasks without any restriction on
body movements, such as in a flight simulator. To do so, we replicated the
study from Dehais et al. (2019) using a 6-dry electrode system in which pilots
had to perform a traffic pattern routine under two load conditions alongside
an auditory oddball task. Our goal is to demonstrate that ERPs, frequency
features, as well as heart rate derived from the Muse-2 system, can be used
to perform mental workload single trial classification for BCI purposes.

MATERIAL AND METHODS

Participants

Five male participants (mean age = 25 years), all students from the Aero-
nautical & Space Superior Institute (ISAE-SUPAERO) - Toulouse Federal
University, took part in this experiment. The experiment was approved by the
Ethical Committee (CER) of Toulouse Federal University (approval number
2022-527).

Scenario

We used the ISAE-SUPAERO flight simulator to conduct the experiments.
The simulator comprises 8 external displays that present a panoramic ren-
dering of the environment rendered through the Flight-Gear open-source
software. The scenario consisted of two consecutive traffic patterns that were
performed at Blagnac airport virtual location. In one traffic pattern, defined
as the low load condition, the participants (left-seated) were monitoring the
flight operated by the flight instructor (right-seated). In the other traffic pat-
tern, defined as the high load condition, the participants were operating the
aircraft themselves while being supervised by the flight instructor. Each traffic
pattern lasted for approximately 10 minutes and 40 seconds. Along with the
flying tasks (i.e. monitoring and flying), the participants were instructed to
perform a passive auditory oddball paradigm comprising a total of 250 audi-
tory stimuli: 25 % were targets (50 normalized pure tones at 1100 Hz) and
75% were non-targets (200 normalized pure tones at 1000 Hz). The inter-
trial interval was set to 2000 ms with a 1000-ms jitter window. EEG data
were streamed using Lab Streaming Layer (LSL) and the Muse-LSL library
(Barachant et al., 2019). The oddball task was implemented in Matlab and
markers corresponding to the onsets of stimulus are also streamed on LSL to
enable synchronization with EEG data. After each landing, participants were
asked to report the number of rare auditory sounds. The order of the scena-
rios was counterbalanced across subjects to control for fatigue and training
effects.

Subjective and Behavioural Measures

Participants were asked to report their level of workload on an analog scale
(0= low, 10= high). Task performance was measured as the ratio of auditory
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targets reported by the participant after completing each traffic pattern and
the actual number of target stimuli played over the corresponding timeframe.

EEG: Event Related Potential

EEG data were preprocessed using the Matlab EEGLab toolbox v.2021. The
continuous EEG data were filtered between 0.1-20 Hz (windowed-sinc FIR
filter with an order of 250). The continuous EEG signals were epoched
around target markers (timestamps were provided by the stimulus presen-
tation software through LSL) from 0.2 s prior to 1 s after stimulus onset.
The outlier epochs were rejected using the pop_jointprob EEGlab function
(standard deviation threshold set to 2 for the locthresh and globthresh para-
meters). Lastly, the epochs were baseline normalized using data from 200 to
0 ms prior to stimulus onset. Further analyses and classification were per-
formed using the Python-based library scikit learn. The classification used a
traditional pipeline for single-trial ERP classification (Barachant et Congedo,
2014). This pipeline was implemented using Pyriemann for the covariance
feature extraction and Scikit-Learn for the classifiers. First, the dimensiona-
lity was reduced using a supervised spatial filter: Xdawnwith 4 filters. Xdawn
enhances the target response with respect to the non-target response for ERP
(B. Rivet et al., 2009).

Then for each class, a prototyped response P was obtained by average
across trials. For each trial Xi, a super trial Si was built using the conca-
tenation of P and the trial Xi. These super trials Si were then used for
covariance estimation. The trials were converted into covariance matrices to
take into account the spatial structure of the signal (Barrachant & Congedo,
2014). Next, the covariance matrices were projected into their tangent space,
using the geometric mean of all the covariance matrices as a reference point
(Barachant et al., 2012). After this projection, each covariance matrix was
represented by a vector upon which a logistic regression (no regularization)
was applied for classification. The performance was evaluated using balanced
accuracy and a 10-fold cross-validation. The folds were stratified to ensure
that each of them contained the same proportion of target and non-target
trials. We reported balanced accuracy measures since the number of epochs
between the two mental workload conditions could slightly differ.

EEG: Frequency Features

Features extraction was conducted using the Python toolbox MNE (Gram-
fort et al., 2013), while the classification and cross-validation parts are
processed using Scikit-Learn. Firstly, we have computed the average power
spectral density (PSD) in the alpha band ([8 12] Hz) on frontal electrodes
at the group level for descriptive statistics purposes. All the averaged PSDs
in this study were computed using the Welch method on sliding windows of
length 256. Sub-bands PSD data were converted in dB to take the 1/f law
of EEG signal spectral power into account and to reduce the contribution of
large values, such as outliers (Lotte, 2014).

Thereafter for the individual single trial classification pipeline, sub-bands
PSDmetrics were extracted from non-overlapping 3s windows. The approach
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aimed to predict whether an unseen 3s segment of EEG data the pilot was
monitoring or flying. For each window, 5 spectral features were extracted.
These features corresponded to the averaged PSD (in dB) of 5 frequency bands
of interest: delta [1 4] Hz, theta [4 8] Hz, alpha [8 12] Hz, beta [12 30] Hz
and gamma [30 45] Hz). Hence, for each subject, we obtained a matrix with 5
columns corresponding to the 5 spectral features and rows corresponding to
the different 3s windows (440 on average), both from the flying and monito-
ring conditions. The corresponding windows labels were 1 if the subject was
flying and 0 if monitoring.

A specific classifier was trained for each subject, using only his EEG data.
As in Dehais et al. (2019), the classification approach used Linear Discri-
minant Analysis (LDA) preceded by a standardization of features (mean
centering and scaling to unit variance). We implemented a nested cross-
validation: an outer loop with 5-fold cross-validation to split between train
and test for performance evaluation and another inner-loop of again 5-fold
cross-validation for train and validation split. Validation data were used to
find optimal hyper-parameters, individually for each subject, for the LDA
(solver: ‘lsqr’ or ‘eigen’ and number of components: 1, 5, 10). The nested
cross-validation was repeated 5 times, with different seeds leading to a total
of 25 performance measures for each subject that were then averaged and
reported. We also inspected the absolute weightvalues of the LDA models
(on the first component) reflecting the importance attributed to features as a
proxy to measure their contribution to the model. We computed four diffe-
rent pipelines: using all spectral features, using only beta and gamma bands,
using only delta and theta bands, and using only alpha band activity.

PPG

The Muse-2 has three PPG channels (ambient, green and red lights). As
recommended by Maeda et al. (2008), the green light PPG channel (#2)
was preferred over the infrared one since it correlates better with ECG
signal. We used the neurokit21 Python package (Makowski et al., 2021)
dedicated to compute the HR derived from the PPG sensor. The data for
the high (PF) and low (PM) mental workload conditions were cleaned with
the ppg_process function (default settings) - see Figure 1. and the PPG HR
was then extracted using the ppg_analyze function (default settings). From
the HR, we have extracted the mean and standard deviation on 3-second
non-overlapping windows. These two features are then supplied to an LDA
classifier to discriminate between the two experimental conditions: pilot
flying and monitoring.

RESULTS

Descriptive Statistics

The following Table 1 reports the descriptive findings at the group level for
the subjective, behavioral and physiological measures.

Statistical analyses of the ERPs were carried out using a 2-way repeated
measure analysis of variance (ANOVA) with load (Low, High) and Electrodes

1https://neuropsychology.github.io/NeuroKit. © Copyright 2020
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Figure 1: Example of PPG data processed with Neurokit2 for peaks detection (above)
and HR estimation (below).

Table 1. Subjective, behavioural and neurophysiological findings (Folds et al. 2008).

Metrics Low load (PM)
Mean (SD)

High load (PF)
Mean (SD)

Subjective Mental workload 4.0 (1.6) 7.2 (0.8)
Absolute number of erroneous
auditory targets

4.4 (4.3) 10 (5.7)

HR PPG (bpm) 88.8 (20.1) 93.1 (17.2)
Frontal Alpha (dB) 109.9 (2.8) 111.3 (2.3)

(TP9 and TP10) as within-subject factors. We found a load condition × ele-
ctrodes significant interaction (p < 0.01, FDR corrected). This effect was due
to higher P300 amplitude for the target sound in the low load compared to
the high load condition on TP9 and TP10 (see Figure 2).

Figure 2: Grand averaged waveforms of the ERPs for temporal electrodes with stan-
dard error (shapes). Blue: Low load conditions for auditory targets. Red: High load
condition for auditory targets. The black lines on the x axis specify the time range
when the target sound-related and the frequent sound-related ERP amplitudes were
significantly different (p < 0.01).
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Classification Accuracy for the Different Pipelines

Table 2
presents the classification accuracy for the different combinations of EEG
frequency features to classify the low (PM) vs high workload (PF) scenario.

Table 2. Classification accuracy for the EEG frequency pipeline.

All features
Mean SD

Delta & Theta
Mean (SD)

Alpha Mean
(SD)

Beta Mean
(SD)& Gamma

% (2.5) 61.0 % (5.1) 50.9% (5.2) 91.6% (2.5)

The mean classification accuracy reached 75.8% (SD: 18.1%) for the PPG
based classifier and 77.8% (SD: 7.6%) for the ERP based classifier (see
Figure 3).

Figure 3: Mean classification accuracy for the five participants with the PPG (in red)
and ERP (in blue) based classifiers.

DISCUSSION

The objective of this study was to show the feasibility to measure pilot’s men-
tal workload with a low cost highly mobile EEG/PPG system. The subjective
and behavioral measures confirmed that we successfully manipulated mental
demand in the two scenarios. The participants reported higher mental wor-
kload and committed more counting errors on the auditory task when flying
than when they were only monitoring the flight. The participants also exh-
ibited a higher mean PPG HR, a lower mean alpha band power during the
performance of the flying condition compared to the monitoring condition.
These trends are consistent with the literature since higher mental demand is
known to increase cardiac activity (higher HR) and arousal (lower PSD in the
alpha band). However, these preliminary findings have to be taken carefully
since our sample size was very small (N = 5) and the standard deviations
for these metrics were high. Interestingly enough, the time-domain analy-
sis showed that the P300 amplitude for the auditory target was statistically
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higher in the low load condition (PM) than in the high load condition on
the two temporal electrodes. These results are in line with previous findings
(Dehais et al., 2019, Roy et al. 2016a, Roy et al. 2016b, Brouwer et al., 2012)
who demonstrated that the amplitude of the evoked P300 (used as a probe
of available attentional resources) was negatively affected when primary task
difficulty increased, leaving less cognitive resources to process the secondary
auditory tasks. Recent works have also demonstrated the processing of visual
and inertial flow of information recapture attentional resources and there-
fore have adverse effects on attentional resources allocated to a secondary
auditory task (Ladouce et al., 2019). However, it can’t be excluded that the
absence of P300 in the high load might also be due to muscular artefacts
(neck, eye movement, arms) as a consequence of operating the thrust and
joystick.

Our main objective was to perform single trial classification over the dif-
ferent signals (EEG and PPG) to discriminate the two load conditions. The
classification accuracy was very high for the frequency feature-based classi-
fier (92.5%) when combining all the features. However subsequent analyses
revealed the strong influence of the beta and gamma band-based features on
this classification score (see Table 2). Whitham et al. (2007) demonstrated
that EEG frequencies above 20 Hz are highly contaminated by electromyo-
graphic activity. In our experiment, the pilots exhibited higher motor activity
in the flying condition thus biasing the classifier that gave more importance
to these high frequency features. The theta-delta bands-based classifier rea-
ched 61% of accuracy. It is above chance level, however, one has to keep
in mind that these frequencies are also contaminated by blinks (Kaia et al.,
2020).When using only the alpha band, a frequency that reflects endogenous
brain rhythm, the classification was at chance level. One reason for this low
accuracy is that it is generally recommended to compute alpha band PSD on
parietal sites (Arico et al., 2015, Erwin et al., 2016, Fairclough et al., 2005)
rather than on temporal and prefrontal ones as we did because of the Muse-2
electrodes location. Besides the muscular artifacts in the EEG signal, the wor-
kload was not constant during the 10 minutes of each scenario (i.e., always
low in PM condition vs always high in PF condition). Scannella et al. (2018)
reported that the landing and take-off legs led to higher mental demand than
the downwind one. As a consequence, a portion of the labels used to train the
classifier (i.e. label 1 for all epochs of PF and label 0 for all epochs of PM)may
not reflect the actual experienced workload by the pilots. One could imagine
that the experienced workload for some epochs extracted during the downw-
ind phase of PF was actually closer to the low workload of the PM scenario,
than the very intense workload of landing and take-off legs during PF. This
portion of fuzzy labels is hard to estimate but probably significant and can
partially explain the poor testing accuracy obtained by the pipeline using only
the alpha band power feature. In other terms, this binary segmentation there-
fore falls short in reflecting how the mental workload induced by a cognitive
task is not monotonic/stationary but rather fluctuates over transient episo-
des throughout a task. Interestingly enough the classification pipeline using
data locked around ERPs of the auxiliary oddball task has provided very
good performance (77.8%) with relatively low variance. The classification
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pipeline was using only data from four electrodes (and did not target central
and parietal sites). It is far better than the ERPs based classifier implemented
by Dehais et al (2019) with a 6-dry EEG system that did not exceed chance
level. One of the reasons is that here, we used advanced machine learning
techniques combining the spatial filtering of Xdawn with Riemannian based
classification algorithms that have demonstrated high classification scores
even in ecological settings (Somon et al., 2022a). As outlined above, the
experienced workload fluctuated more than the binary labels used by the
classification. However, the reduction on average of oddball ERPs amplitude
during the PF seems to indicate that the transient variations of workload have
less impact on the modulation of ERPs level. This could explain why the
ERPs based pipeline performed better than the spectral pipeline that exclu-
des bands with muscular artifacts. This is in line with the claim from Roy
et al. (2016) that ERPs based classifiers produce a more stable classifica-
tion over time compared to frequency base classification pipeline. However,
a drawback of the ERP-based pipeline is that it requires the use of additional
non-natural stimuli, the oddball, that might not be suited for real flight ope-
rations. Eventually, the HR-PPG based classifier also performed reasonably
well on average (75.8%) but this performance was characterized by a much
higher variance than the ERP-based classification.

CONCLUSION

This experiment, together with previous studies (Cannard, Wahbeh &
Delorme, 2021, Krigolson et al., 2021, Krigoloson et al., 2017) confirms
that a low-cost and portable device offers interesting prospects for research.
The quick and easy setup of both PPG and EEG sensors are appealing features
within the context of applied research. The reduced number of dry electrodes
however comes at the expense of signal-to-noise ratio and preventing from
performing state of the art EEG cleaning procedure that require high num-
ber of channels (e.g., ICA). As a consequence, our results suggest that ERPs
based classifiers appeared to offer the best trade-off in terms of accuracy and
responsiveness for estimating mental workload.
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