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ABSTRACT

Wearable electroencephalogram (EEG) devices using in-ear EEG are expected to make
brain-computer interface (BCI) easier. Previous studies using in-ear EEG to realize ste-
ady state visual evoked potential (SSVEP)-BCI, which is used for text input, have shown
that the number of inputs is smaller than that of conventional SSVEP-BCI using head
EEG, which has a 3–6 value classification. This study proposes a 28-value SSVEP-BCI
with in-ear EEG for alphabetic input and attempts to improve accuracy using multi-
ple regression analysis (MRA) in addition to canonical correlation analysis (CCA). The
CCA and MRA have accuracies of 28.17% and 55.83%, respectively. Therefore, future
efforts should be made to improve the accuracy by setting a threshold for the detected
SSVEP component.
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INTRODUCTION

Wearable electroencephalogram (EEG) measurement devices are expected
to be used in everyday healthcare. An in-ear EEG obtained near the ear is
well-suited for wearable devices, and study focusing on in-ear EEG is pro-
gressing (Kidmose et al. 2013; Guermandi et al. 2018; Sun et al. 2022;
Goverdovsky et al. 2016; Ahn et al. al. 2018). Brain-computer interface
(BCI) is an interface that connects humans and computers (Vidal, 1973).
SSVEP-BCI, using steady state visual evoked potential (SSVEP), is an excellent
tool for character input (Chen et al. 2014). Because SSVEP is predominan-
tly evoked in the human occipital primary visual cortex (Lotte et al. 2018),
it is hypothesized that the SSVEP component in the in-ear EEG is attenu-
ated. SSVEP is a high-signal-to-noise response in the primary visual cortex
upon fixing a blinking stimulus (Lotte et al. 2018), containing double and
triple harmonics (Zhu et al. 2010). A wide evoked band of 1–75 Hz has been
identified (Herrmann, 2001). Using EEG data obtained from the scalp near
the primary visual cortex, a previous study proposed an SSVEP-BCI with 50
input options (Kondo and Tanaka, 2022). There is also an SSVEP-BCI that
utilizes an ultrawide monitor to obtain 160 inputs (Chen et al. 2021). Thus,
it is not difficult to realize a multivalued input in conventional SSVEP-BCI
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that collects head EEG data. This is because SSVEP can be clearly distin-
guished from background noise components in head EEG data. In a previous
study that constructed SSVEP-BCI using in-ear EEG,which is farther from the
primary visual cortex than conventional measurement positions and whose
SSVEP components are attenuated, the number of inputs was limited to 3–6
value classification. (Sun et al. 2022; Zhu et al. 2021; Kwak and Lee, 2020;
Ahn at el. 2018). The 3–6 value classification has a low degree of freedom
as a BCI. This study focused on improving the number of inputs and accu-
racy of SSVEP-BCI using in-ear EEG. The goal was to achieve the same level
of accuracy as SSVEP-BCI, which uses head EEG data for comparison and
training data.

THEORY

Flashing Stimulus Design

When controlling multiple inputs with SSVEP, each flickering stimulus used
to induce SSVEP is often assigned a unique flickering frequency (Kondo and
Tanaka, 2022). Light emitting diode, liquid crystal display (LCD) are mainly
used for stimulus presentation screens. In particular, LCDs, which are inex-
pensive and easy to implement, are used in this study. The limited refresh rate
is one thing to keep in mind when using an LCD. The problem is that when
only simple on/off blinking stimuli are used, the types of blinking stimulus
frequencies that can be presented on the LCD are limited to only submultiples
of the LCD’s refresh rate. This problem was solved by sinusoidally control-
ling the brightness of the blinking stimulus (Chen et al. 2014). Following a
previous study, the blinking stimulus was designed in this study according to
Eq. (1):
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where fi is the stimulation frequency, R is the LCD refresh rate, and n is the
frame number.

The maximum SSVEP component is generally around 10 Hz, and the
SSVEP component attenuates as the stimulus frequency increases (Herrman,
2001). In this study, a stimulus frequency band of 16.0–29.5Hz (0.5 Hz step)
was used according to Eq. (1). Since this band is close to 10 Hz, the SSVEP
component is large.Moreover, by using a frequency band slightly higher than
10 Hz, the subject’s stress caused by flickering stimulation is reduced (Kondo
and Tanaka, 2023). Since this study conducts experiments with a larger num-
ber of inputs than the conventional SSVEP-BCI with in-ear EEG, a frequency
band was selected to maintain the subject’s concentration. Figure 1 shows a
blinking stimulus screen with 28 stimulus frequencies 16.0–29.5 Hz assigned
based on Eq. (1). Inside each target is an A–Z alphabet, a capital letter, and a
delete button. The number displayed on the lower right of the target is the sti-
mulation frequency assigned to each target. This number was not displayed
during the experiment.
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Figure 1: Flashing stimulus display. (The numbers in square are stimulus frequencies).

Canonical Correlation Analysis

Canonical correlation analysis (CCA) is one of the analysis methods fre-
quently used in SSVEP-BCI. It is a statistical method for integrating inputs
frommultiple information sources and for determining linear transformation
parameters so as to maximize the number of correlations between linearly
transformed values of multiple data sets (Akaho, 2013). In SSVEP-BCI, data
y is defined by Eq. (2): where x is EEG data measured using an EEG device, y
is a reference frequency signal to be compared, and fi indicates the frequency
number.

yi,j−1 = sin
(
jπ fin
fs

)
, j = 2, 4, 6, n = 1, 2, . . . , T

yi,j = cos
(
jπ fin
fs

)
, j = 2, 4, 6, n = 1, 2, . . . , T

(2)

For example, f1 is the reference frequency signal for the 16 Hz stimu-
lus. fs is the sampling rate, T is the time series and the number of sample
points, and j is used to accommodate the harmonic components of 2 and
3 times the stimulus frequency (Chen et al. 2014). When the time series
of data x, y is t = 1, 2, . . . , T, the combination of data is expressed
as
(
x1, y1

)
,
(
x2, y2

)
, . . . , (xT , yT). For simplicity, the sample mean of x, y

is assumed to be 0. Considering the values u(x), v(y) obtained by linearly
transforming x, y respectively, Eq. (3) is obtained:

u (x) = aTx
v (y) = bTy

(3)

a,b in Eq. (3) are the parameters to be obtained in CCA. The correlation
coefficients for these values are given by dividing the covariance by their
respective standard deviations. Furthermore, when the average of x, y is set
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to 0 in advance, it follows Eq. (4):
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E[f(x)] represents the sample mean. In this study, the correlation between
u and v columns is defined as a sample canonical correlation vector r. Let
C be the sum of r. Since C is calculated for each stimulus frequency, the
sum C of sample canonical correlation vectors r for each stimulus frequency
is expressed as Ci in the same way as fi in Eqs. (1) and (2). It is presumed
that the subject gazed at the blinking stimulus with the maximum stimulus
frequency at CC1−−28 and the output was determined.

Multiple Regression Analysis

The SSVEP component in the in-ear EEG is attenuated compared with the
occipital head EEG data. Therefore, it is difficult for conventional CCA
and in-ear EEG data to achieve the same performance as conventional CCA
and head EEG data. In this study, to improve the accuracy of SSVEP-BCI
with in-ear EEG, an analysis algorithm was applied using multiple regression
analysis (MRA), with the head EEG data as training data. MRA is an algo-
rithm for predicting one target variable with multiple explanatory variables.
In this study, CCA was performed on head EEG data and in-ear EEG data.
The results were processed by MRA to predict the CCA result C of in-ear
EEG data from head EEG data. In a certain input target, the model for pre-
dicting the CCA result Ci using the head EEG data is presented in Eq. (5)
with the CCA result earC1−−28 of the in-ear EEG data. reCi is a value output
by a model constructed using Ci and earCi, and it is estimated that reCi was
gazing at the blinking stimulus with the maximum stimulus frequency. N is
the number of input options, i.e., 28 in this study.

reCi = b1earC1 + b2earC2 + . . . + bNearCN =

N∑
i = 1

biearCi (5)

EXPERIMENT

SSVEP-BCI System

When a single or multiple flickering stimuli are presented and the subject
gazes at one of the options, the frequency component equivalent to the
unique stimulus frequency increases in the occipital primary visual cortex.
Figure 1 shows the stimulus screen presented in this study, and the experimen-
ter instructed the subject on which blinking stimulus to focus on. The subject
gazed at the stimulus according to the instructions, and the state of brain
activity at that time was recorded with an electroencephalograph EEG1000
(1 kHz) manufactured by Nihon Koden. The electrodes used for the measu-
rement consisted of 17 channels in total, including 4 channels on the back
of the head, 5 channels on the left and right near the ears, 1 channel on
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Figure 2: Measurement area.

the GND, and 2 channels on the reference. Figure 2 shows the measurement
sites.

Subjects wore the EEG1000 and fixed their viewpoint at a position 50 cm
from the flashing stimulus display (Z-EDGE 27-inch full HD). The stimulus
shown in Figure 1 was rendered on a 27-inch display with a resolution of
1920 × 1080 pixels. Therefore, the size of the blinking stimulus was 150
pixels and 5.55 cm square. The vertical and horizontal intervals between the
blinking stimuli are 156×141 pixels and 5.77×5.22 cm. This is the result of
designing the screen to ensure an interval as close as possible to the size of the
flickering stimulus to suppress the effects of the adjacent flickering stimuli.
The visual angle of the blinking stimulus is 3.35 degrees.

Measurements

As instructed by the experimenter, the subject gazes at the blinking stimulus.
One measurement time is 5 s. As shown in Figure 1, three measurements are
performed for each blinking stimulus, resulting in 84 trials per subject. Three
measurements are performed for one flickering stimulus to calculate the accu-
racy and measure the training data used for constructing the MRA model.
In order to measure the calibration data used to build the MRA model, the
same size measurements were taken before the measurement production. This
study was conducted on nine people aged 20–23 from Kogakuin University.
This experiment was conducted based on “Psychological and biometric mea-
surement for humans at Kogakuin University 2022-R1-17.” In addition, prior
explanation, and written consent were obtained from the subjects. In parti-
cular, it was explained that the blinking stimulus presented to induce SSVEP
may cause discomfort and poor physical condition and that the experiment
could be stopped at any time by the subject’s will.
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RESULT

Accuracy

Figure 3 shows the results of in-ear EEG data analysis by CCA (ear), in-ear
EEG data analysis results of MRA performed after CCA (ear (MRA)), and
head EEG data analysis results by CCA (head). It also shows the accuracy and
standard error of each method. As a result of the analysis, when the blinking
stimulus estimated by SSVEP-BCI matched the blinking stimulus the subject
gazed at, it was treated as a correct answer and counted as the number of
correct answers a. Letting the number of trials be k, and using the number of
correct answers a among them, the input accuracy P is given by Eq. (6).

P =
a
k

(6)

The accuracy of each method was 28.17% for ear, 55.83% for ear (MRA),
and 84.92% for head. Table 1 presents the accuracy of each method and
subject to compare the accuracy of each method by subject.

SSVEP Components for Correct and Incorrect Answers

If the SSVEP-BCI did not perform the expected action, that is, if the blinking
stimulus estimated by the SSVEP-BCI did not match the blinking stimulus
that the subject gazed at, it would be an incorrect answer. At this time, the
SSVEP component of the blinking stimulus that the subject does not gaze at
is superior to the SSVEP component of the blinking stimulus that the subject
gazes at. Figure 4 shows themagnitude relationship between the target SSVEP
component when the answer is correct, the target SSVEP component when

Figure 3: Accuracy by analysis method.
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Table 1. Subject-specific accuracies and differences between head
CCA and MRA.

method
subject ear (%) ear (MRA) (%) head (%)

s.1 14.29 36.75 72.62
s.2 20.24 44.50 71.43
s.3 30.95 49.25 91.67
s.4 10.71 41.25 55.95
s.5 36.90 57.50 84.52
s.6 64.29 76.25 100.00
s.7 25.00 51.50 91.67
s.8 20.24 60.75 96.43
s.9 30.95 84.75 100.00
Average 28.17 55.83 84.92

Figure 4: SSVEP components for correct and incorrect answers (coCCA: target SSVEP
component for the correct answer (CCA); coMRA: target SSVEP component for the
correct answer (MRA); inCCA: target SSVEP component for the incorrect answer (CCA);
inMRA: target SSVEP component for the incorrect answer (MRA); erCCA: maximum
SSVEP component at the incorrect anwer (CCA); erMRA: maximum SSVEP component
at the incorrect answer (MRA)).

the answer is incorrect, and the SSVEP component of the blinking stimulus
whose analysis result shows the maximum value when the answer is incor-
rect. Figure 5 shows the analysis of the magnitude relationship between the
SSVEP components for each condition shown in Figure 4 by stimulus frequ-
ency. Figure 5 also shows the target SSVEP component at the correct answer,
the target SSVEP component at the incorrect answer, and the SSVEP com-
ponent of the blinking stimulus whose analysis result showed the maximum
value at the incorrect answer.
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Figure 5: SSVEP components for correct and incorrect answers by frequency (coCCA:
target SSVEP component for the correct answer (CCA); coMRA: target SSVEP compo-
nent for the correct answer (MRA); inCCA: target SSVEP component for the incorrect
answer (CCA); inMRA: target SSVEP component for the incorrect answer (MRA);
erCCA: maximum SSVEP component at the incorrect answer (CCA); erMRA: maximum
SSVEP component at the incorrect answer (MRA)).

DISCUSSION

Performance Comparison of SSVEP-BCI

As shown in Figure 3, the accuracy of SSVEP-BCI using in-ear EEG and CCA
and using MRA was 28.17% and 55.83%, respectively. The performance
difference between the two methods was 27.66% and 1.98 times, indicating
that SSVEP-BCI using MRA achieved higher accuracy than SSVEP-BCI using
in-ear EEG and CCA. However, the accuracy using head EEG in Figure 3
was 84.92%, and the performance difference with SSVEP-BCI using MRA
was 29.09% and 1.52 times. Therefore, the goal of this study, i.e., to realize
SSVEP-BCI with in-ear EEG with the same accuracy as SSVEP-BCI with head
EEG data, could not be achieved. To solve the problem that the SSVEP com-
ponent is attenuated more in the vicinity of the ears than in the back of the
head, MRA was applied, and a performance improvement of 27.66% was
achieved. In addition to that, we aim to improve performance by comparing
CCA with task-related component analysis (TRCA).

Indicators to Prevent Misjudgment

Tt is necessary for the SSVEP-BCI designer to grasp the expected value of the
SSVEP component for each blinking stimulus to effectively use SSVEP-BCI by
MRA proposed in this study. As shown in In Figure 4, only one coMRA value
exceeds 1.5. Both the target blinking stimulus at the time of misjudgment and
the blinking stimulus showing the maximum value were below 1.5. In other
words, it can be asserted that the SSVEP component was unequivocally indu-
ced when the MRA value exceeds 1.5. It is suggested that misjudgment may
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be reduced by setting a threshold for the MRA analysis result and outputting
it in this way.

However, as described in “flashing stimulus design,” the magnitude relati-
onship of the SSVEP component changes depending on the flashing stimulus
frequency. Moreover, its peak exists around 10 Hz, and SSVEP decreases
with increasing frequency (Herrmann, 2001). Therefore, a threshold for redu-
cing erroneous determination should also be examined for each frequency. As
shown in Figure 5, the magnitude relationship between the frequency and the
correct/incorrect SSVEP components changes with each frequency, but diffe-
rences can be confirmed for each condition. Comparing the target SSVEP
component at the correct answer indicated by coMRA and the blinking sti-
mulus SSVEP component showing the maximum value at the wrong decision
indicated by erMRA, it can be seen that there is a boundary line near 1.6.
Since this is a plot of mean values for all subjects and all trials, the presence
of outliers must be considered. However, this study discriminates between
cases in which the SSVEP component increased when the subject gazed at
the blinking stimulus, cases in which the SSVEP component did not incre-
ase when the subject gazed at the blinking stimulus, and cases in which the
SSVEP component increased when the subject did not gaze at the blinking
stimulus. There is a possibility that it can be done. In this study, one subject
performed three measurements for one type of stimulus; thus, not enough
data was collected to determine the threshold. The future, study will aim to
improve the performance by collecting enough data to determine the thresh-
old value of the SSVEP component for each subject and stimulus frequency
and by introducing a reduction in misjudgment by setting the threshold value.

CONCLUSION

As study of wearable BCI progresses, applications using EEG data near the
ear have been proposed. SSVEP-BCI,which is a multi-value input, high-speed,
high-precision BCI, is conventionally used by attaching electrodes near the
primary visual cortex of the occipital region. In a previous study aimed
at transplanting SSVEP-BCI to BCI as a wearable device, there was only
SSVEP-BCI with a maximum number of inputs of eight values. This is as
the SSVEP component decreased because the measurement site moved near
the ear instead of the back of the head, making it difficult to classify the input
options. This study proposed an analysis algorithm using CCA and MRA to
realize multilevel input of SSVEP-BCI using in-ear EEG with the same accu-
racy as conventional occipital EEG-based SSVEP-BCI. The accuracy of CCA
performed with ear EEG was 28.17%, the accuracy of CCA performed with
occipital EEG was 84.92%, and accuracy through the analysis method using
the MRA model constructed from the results of CCA using occipital EEG
and ear EEG was 55.83%. This suggests that MRA can improve the perfor-
mance of SSVEP-BCI using ear EEG. The goal of this study is to achieve the
same level of accuracy with in-ear EEG as with head EEG; however, this was
not achieved. To improve the accuracy in the future, setting SSVEP compo-
nent thresholds will be considered for eachmethod and stimulation frequency
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as shown in Figures 4 and 5. This is expected to have the effect of preven-
ting misjudgments when the SSVEP component of the target frequency is
not clearly induced for some reason, and prompting remeasurement. From
the results of this study, although there is a problem in achieving both multi-
value input and accuracy in SSVEP-BCI using in-ear EEG, future performance
improvement is expected.
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