
Human Interaction and Emerging Technologies (IHIET 2023), Vol. 111, 2023, 168–174

https://doi.org/10.54941/ahfe1004021

CLIP-Based Search Engine for Retrieval
of Label-Free Images Using a Text Query
Yurij Mikhalevich

Lightning AI, Dubai, UAE

ABSTRACT

In January 2021, OpenAI released the Contrastive Language-Image Pre-Training (CLIP)
model, able to learn SOTA image representations from scratch on a dataset of 400 mil-
lion (image, text) pairs collected from the Internet. This model enables researchers
to use natural language to reference learned visual concepts (or describe new ones),
enabling the zero-shot transfer of the model to downstream tasks. One of the possible
applications of CLIP is to look up images using natural language queries. This applica-
tion is especially important in the context of the constantly growing amount of visual
information created by people. This paper explores the application of the CLIP model
to the image search problem. It proposes a practical and scalable implementation of
the image search featuring the cache layer powered by SQLite 3 relational database
management system (RDBMS) to enable performant repetitive image searches. The
method allows efficient image retrieval using a text query when searching large image
datasets. The method achieves 32.27% top-1 accuracy on the ImageNet-1k 1.28 million
images train set and 55.15% top-1 accuracy on the CIFAR-100 10 thousand images test
set. When applying the method, the image indexing time scales linearly with the num-
ber of images, and the image search time increases minorly. Indexing 50,000 images
on Apple M1 Max CPU takes 19 minutes and 24 seconds while indexing 1, 281, 167 ima-
ges on the same CPU takes 8 hours, 31 minutes, and 26 seconds. The query through
50,000 images on Apple M1 Max CPU executes in 4 seconds, while the same query
through 1, 281, 167 images on the same CPU executes in 11 seconds.

Keywords: Artificial intelligence, Computer vision, Natural language processing, Image search,
Transformers

INTRODUCTION

Contrastive Language-Image Pre-Training (CLIP) is a neural network trained
on a variety of (image, text) pairs. It can be instructed in natural language
to predict the most relevant text snippet, given an image, without directly
optimizing for the task, similar to the zero-shot capabilities of GPT-2 and
3 (Radford et al., 2021). Authors of CLIP found that CLIP matches the per-
formance of the original ResNet50 on ImageNet “zero-shot” without using
any of the original 1.28M labeled examples, overcoming several significant
challenges in computer vision.

The capabilities of CLIP also allow researchers to perform image sea-
rches using natural language queries. This article explores this particular
application of CLIP.

© 2023. Published by AHFE Open Access. All rights reserved. 168

https://doi.org/10.54941/ahfe1004021


CLIP-Based Search Engine for Retrieval of Label-Free Images Using a Text Query 169

The rapid rate at which the data grows makes this research especially rele-
vant. With the rise of digital devices and the Internet, more and more images
are being produced and shared online daily. This exponential growth in data
makes it increasingly difficult to find specific images manually. An efficient
image search solution can help users and businesses quickly find the ima-
ges they need amidst this growing sea of data. Additionally, as more photos
are being shared online, protecting intellectual property and online security
becomes increasingly important. An efficient image search solution can help
identify and remove images that violate copyright laws or contain sensitive or
inappropriate content. Therefore, with the growing amount of data and ima-
ges being created, an efficient image search solution is becoming increasingly
relevant and necessary.

RELATED WORKS

There exist multiple methods and solutions for image search.
Traditional image search is based on bag-of-features defined for each

image, usually containing a set of labels describing the image. The labels are
either specified manually (Fiedler, Bestmann, & Hendrich, 2019), or filled
in by the camera (Tesic, 2005), mobile phones (Kim, Lee, Won, & Moon,
2011), or editing software, or generated by an image recognition algorithm
(Krizhevsky, Sutskever, & Hinton, 2017), or filled in by a combination of
these approaches (Lee, Chen, & Chang, 2006). Then, a search algorithm
is applied to these features to perform the image search. The nature of the
search algorithm depends on the problem and on the nature of the labels.
For example, if we are dealing with GPS coordinates, we can use a dista-
ncebased search algorithm that will look up pictures geographically related
to the query (Zhang, Hallquist, Liang, & Zakhor, 2011). If we are dealing
with text labels, we can use a text-based search algorithm to look up pictu-
res based on text queries. For this, we can choose from a variety of different
techniques ranging from substring matching to a search algorithm based on
lemmatization (Balakrishnan & Lloyd-Yemoh, 2014) to using word embed-
dings (Günther, 2018) (Kenter & De Rijke, 2015). We can get more useful
results in a practical setting if we combine multiple approaches and features,
like GPS coordinates, text labels, the date picture is taken, the camera model,
focal distance, etc (Ismail, 2011).

None of these approaches allows us to search for images using a text query
without having to specify the features beforehand. The techniques described
above also do not allow performing a text-based search for a concept not pre-
sent in the prepared image labels, even if this concept is present in the image
itself. These are the problems that OpenAI’s CLIP (Radford et al., 2021)
enables us to solve.

METHOD

With CLIP’s text transformer, it is possible to convert a text query to an
n-dimensional vector (where n differs depending on the CLIP model used).
With CLIP’s image transformer, it is possible to convert an image to an



170 Mikhalevich

n-dimensional vector. Then we can calculate the dot product (Equation 1)
of the normalized query vector and each of the normalized image vectors. If
we then sort the images by the decreasing dot product and take top-k images,
we will get the k images that match the query the most.

a · b =
n∑

i = 1

aibi = a1b1 + a2b2 + · · · + anbn (1)

While this approach works reasonably fast on a few images, it will scale
poorly with the increase in the number of images. Especially if there is no
access to GPUs to run the CLIP model on. To make the querying scalable, the
solution proposed in this paper caches the image vectors and, when the user
executes repeated queries, only computes the query vector. This approach
allows users to execute repeated queries quickly, without having to wait for
the image to be processed each time that they query.

The solution also allows adding new images to the cache to avoid recom-
puting the whole cache when the image catalog is updated.

Having these mechanisms in place allows the users to use CLIP in practical
applications of image search.

IMPLEMENTATION

The method described above is implemented in the Python utility called rclip
(Mikhalevich, 2023). rclip provides an easy-to-use CLI interface that allows
users to search images within any directory on a computer where rclip is
installed. Search within nested directories is also supported. To use it, the user
should open the terminal, navigate to the directory containing the files that
they want to search through, type “rclip <search query>,” and hit “Enter.”

The solution uses OpenAI’s clip library (Radford et al., 2021) to load the
model and compute the feature vectors. rclip uses ViT-B/32 version of the
CLIP model. The code of the feature computing methods is shared below:

def compute_image_features(self, images: List[Image.Image]) ->
np.ndarray:

images_preprocessed = torch.stack([self._preprocess(thumb) for
thumb in images]).to(self._device)

with torch.no_grad():
image_features = self._model.encode_image(images_preprocessed)
image_features /= image_features.norm(dim=−1, keepdim=True)

return image_features.cpu().numpy()

def compute_text_features(self, text: List[str]) -> np.ndarray:
with torch.no_grad():
text_encoded=

self._model.encode_text(clip.tokenize(text).to(self._device))
text_encoded /= text_encoded.norm(dim=−1, keepdim=True)

return text_encoded.cpu().numpy()

rclip features the image vector cache implemented using SQLite 3 RDBMS
(Hipp, 2021). The image vector is computed and added to the index only if
the cache does not already contain an entry for a given image. The vectors
are cached by image paths. This allows the user to execute repeated queries



CLIP-Based Search Engine for Retrieval of Label-Free Images Using a Text Query 171

over the same image catalog without waiting for the image vectors to be
recomputed.

Here is how the structure of the cache is defined:

self._con.execute('''
CREATE TABLE IF NOT EXISTS images (
id INTEGER PRIMARY KEY,
deleted BOOLEAN,
filepath TEXT NOT NULL UNIQUE,
modified_at DATETIME NOT NULL,
size INTEGER NOT NULL,
vector BLOB NOT NULL

)
''')

The rclip source code is published on GitHub under the MIT license:
https://github.com/yurijmikhalevich/rclip.

PERFORMANCE

rclip was benchmarked using two different CLIP models, ViT-B/32 (smaller
CLIP model) and ViT-L/14@336px (larger CLIP model), on a NAS running

Intel(R) Celeron(R) CPU J3455 @ 1.50GHz. Table 1 shows how rclip per-
forms when indexing and searching through 269 photos when running on
this CPU.

As Table 1 shows, the ViT-L/14@336px performance will not scale
well, which makes rclip unusable in practical scenarios when running
CLIP on low-level and mid-level consumer CPUs. This is why rclip uses
ViT-B/32.

Running rclip indexing with ViT-B/32 on 72,769 photos on the same NAS
powered by Intel(R) Celeron(R) CPU J3455 @ 1.50GHz took 23 hours.

Performing a query over 72,769 photos takes 56 seconds.
To give a better understanding of how rclip performance scales, Table 2

shows how rclip performs when indexing and searching through 50k images
and 1.28m images on the Apple M1 Max CPU. As Table 2 shows, the inde-
xing time scales linearly with the number of images when the search time
increases only slightly, even when going from searching through 50 thousand
images to searching through 1.28 million images.

Table 1. Indexing and search performance on Intel(R) Celeron(R) CPU
J3455 @ 1.50GHz using different CLIP models.

Model Indexing time Search time

ViT-B/32 3m56.626s 0m18.064s
ViT-L/14@336px 125m0.507s 3m19.742s
Difference x31.70 x11.06



172 Mikhalevich

Table 2. Indexing and search performance on Apple M1 Max CPU using
ViT-B/32.

Dataset # of images Indexing time Search time

ImagNet-1k validation set 50k 19m24.750s 0m4.04s
ImagNet-1k
train set

1.28m 8h31m26.680s 0m11.49s

Difference x25.62 x26.35 x2.84

SEARCH QUALITY

rclip achieves 32.27% top-1 accuracy and 45.26% top-5 accuracy rate on
the ImageNet-1k (Russakovsky et al., 2015) 1.28 million images train set and
55.15% top-1 and 81.34% top-5 accuracy on the CIFAR-100 (Krizhevsky,
Hinton, et al., 2009) 10 thousand images test set. Worth noting that rclip per-
forms better on the ImageNet-1k dataset when the text prompt is constructed
as “photo of class” instead of “class.” See Table 3 for more details.

To get a better understanding of rclip’s performance, see Figures 2, 3, 4,
and 5, which show search results for a search performed on a demo set of
142 images (see Figure 1).

Table 3. rclip search quality.

Model and prompt Top-1 accuracy Top-5 accuracy

ImageNet-1k 1.28m
prompt: “class”

31.17% 44.80%

ImageNet-1k 1.28m
prompt: “photo of class”

32.27% 45.26%

CIFAR-100 10k
prompt: “class”

55.15% 81.34%

CIFAR-100 10k
prompt: “photo of class”

53.13% 78.71%

Figure 1: Demo set sample.



CLIP-Based Search Engine for Retrieval of Label-Free Images Using a Text Query 173

Figure 2: Search result for the query “cat”.

Figure 3: Search result for query “snow”.

Figure 4: Search result for the query “leading lines”.

Figure 5: Top result for the query “a kitten peeking from behind a corner”.

CONCLUSION

rclip, a command-line utility for image search that is easy to use, was develo-
ped using OpenAI’s CLIP model. The utility is highly efficient and practical,
but there are still ways to optimize its performance further. Future plans
include creating a distinct model for the CLIP text transformer and loading
only it when users conduct a search that does not require indexing, omitting
the loading of the CLIP vision transformer. Additionally, future plans include
improving rclip by ensuring it does not re-index files when they are rena-
med. These upgrades would increase the utility’s efficiency, but even with the
current performance, rclip is an incredibly valuable tool.



174 Mikhalevich

REFERENCES
Balakrishnan, V., Lloyd-Yemoh, E. (2014). Stemming and lemmatization: A compa-

rison of retrieval performances.
Fiedler, N., Bestmann, M., Hendrich, N. (2019). Imagetagger: An open source online

platform for collaborative image labeling. In Robocup 2018: Robot world cup
XXII 22 (pp. 162–169).

Günther, M. (2018). Freddy: Fast word embeddings in database systems. In
Proceedings of the 2018 international conference on management of data
(pp. 1817–1819).

Hipp, R. D. (2021). SQLite (Version 3.32.2) [Computer software]. https://www.sqli
te.org/index.html

Ismail,M.M.B. (2011). Image annotation and retrieval based onmulti-modal feature
clustering and similarity propagation. University of Louisville.

Kenter, T., De Rijke, M. (2015). Short text similarity with word embeddings. In
Proceedings of the 24th acm international on conference on information and
knowledge management (pp. 1411–1420).

Kim, J., Lee, S., Won, J.-S., Moon, Y.-S. (2011). Photo cube: an automatic
management and search for photos using mobile smartphones. In 2011 IEEE
ninth international conference on dependable, autonomic and secure computing
(pp. 1228–1234).

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from
tiny images.

Krizhevsky, A., Sutskever, I., Hinton, G. E. (2017). Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6), 84–90.

Lee, B. N., Chen,W.-Y., Chang, E. Y. (2006). A scalable service for photo annotation,
sharing, and search. In Proceedings of the 14th acm international conference on
multimedia (pp. 699–702).

Mikhalevich, Y. (2023). Rclip (Version 1.2.5) [Computer software]. https://github.c
om/yurijmikhalevich/rclip/tree/v1.2.5

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S.,... Sutskever,
I. (2021). Learning transferable visual models from natural language supervi-
sion. arXiv. Retrieved from https://arxiv.org/abs/ 2103.00020 doi: 10.48550/AR-
XIV.2103.00020.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,... FeiFei, L.
(2015). ImageNet Large Scale Visual Recognition Challenge. International Journal
of Computer Vision (IJCV), 115(3), 211–252. doi: 10.1007/s11263-015-0816-y.

Tesic, J. (2005). Metadata practices for consumer photos. IEEE MultiMedia, 12(3),
86–92.

Zhang, J., Hallquist, A., Liang, E., Zakhor, A. (2011). Location-based image retrie-
val for urban environments. In 2011 18th ieee international conference on image
processing (pp. 3677–3680).

https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://github.com/yurijmikhalevich/rclip/tree/v1.2.5
https://github.com/yurijmikhalevich/rclip/tree/v1.2.5
https://arxiv.org/abs/

	CLIP-Based Search Engine for Retrieval of Label-Free Images Using a Text Query
	INTRODUCTION
	RELATED WORKS
	METHOD
	IMPLEMENTATION
	PERFORMANCE
	SEARCH QUALITY
	CONCLUSION


