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ABSTRACT

Transactions are an important aspect of human social life, and represent dynamic flow
of information, intangible values, such as trust, as well as monetary and social capi-
tal. Although much research has been conducted on the nature of transactions in fields
ranging from the social sciences to game theory, the systemic effects of different types
of strategic agents transacting in real-world social networks (often following a scale-
free distribution) are not fully understood. An influential economic measure that has
not received adequate attention in the complex networks and game theory communi-
ties, is the Gini Coefficient, which is widely used to quantify and understand wealth
inequality. In this paper, we define a network model called a strategic agent network
(SAN) and present a methodological framework based on game theory for investiga-
ting questions of inequality using SANs. We briefly comment on results obtained from
a preliminary experimental investigation using a real-world dataset based on Bitcoin.
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INTRODUCTION

With conceptual and methodological advances in both network science
(Barabasi, 2013), and computational social science (Alvarez, 2016), it has
become possible to study complex research questions by modelling and simu-
lating the evolution of dynamic social systems (Troitzsch, 2012; Dabbaghian
and Mago, 2014). Research on social networks within the computational
sciences alone now spans over two decades of research, with recent focus
on higher-order and ‘multiplex’ networks (Kanawati, 2015). However, alth-
ough networks have a long history in modelling and simulating human social
systems, such as work in network growth models that aim to model the
dynamic aspects of such systems (including how the scale-free structure often
observed in such networks comes to be), there is less work on using the netw-
ork to model a system of dynamic transactions. A transaction here does not
have to be monetary in nature, since transactions in the real world can invo-
lve intangible goods, such as goodwill, social capital, trust, information and
other ‘goods’ on which there has been much exposition in the social sciences
(Halpern, 2005; Moore, 1999). We adopt a dictionary definition of the word
here, withMerriam-Webster defining the word transaction as both (emphases
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ours) “an exchange or transfer of goods, services, or funds” and as “a com-
municative action or activity involving two parties or things that reciprocally
affect or influence each other.”

Arguably, a significant fraction of interactions in everyday social life is
transactional, rather than growth-based where new nodes or actors form a
social acquaintance with us. Intuitively, the majority of our interactions tend
to be largely limited to people we are already connected to, be they friends,
family, neighbours and colleagues. From a utility theory perspective, transa-
ctions should only occur between two parties in a rational, non-duress setting
if both parties expect to gain from the transaction (mutual benefit). Formal
mechanisms, such as contract law, can be used to encode the expectations
of both parties; however, in everyday life, transactions are more informal
and based on trust. Individuals are also likely to change their behaviour in
the presence of external cues and incentives. Finally, once ‘betrayed’ in a
transaction, a betrayed individual is less likely to transact with the betraying
individual.

Such behaviour is not fixed, but is also not random. In the last 75 years,
game theory has emerged as an influential field of research aiming to model
and explain decision making under conditions of uncertainty (Weintraub,
1992; Leonard, 2010). Although game theory historically found its appli-
cations in economics and social sciences, much more recently, a growing
body of work has explored its utility in modelling agent-based interactions
in graphs and networks (Chen et al. 2009; D’souza et al. 2007. Yet, rese-
arch at the intersection of game theory and networks has tended to focus
more on network growth, including game-theoretic explanations for models
(sometimes, but not always, relying on simulations) such as preferential atta-
chment (Avin et al. 2018). In contrast, there is much less exploration of
how game theory can be used to model and simulate dynamic transacti-
ons on an existing network, especially in the presence of external incentives
and other reasonable constraints guided by sociological observations (e.g.,
that transactions are less likely to occur in the absence of a pre-existing
relationship).

This paper presents an abstract agent-based model that seeks to represent
both network structure and the game-theoretic nature of strategic transacti-
ons. We focus on strategic transactions as a means to developing a better
understanding of inequality. Intuitively, if we imagine that the initial condi-
tion of a system was one of perfect equality (e.g., everyone has equal wealth
or property). Assuming that there was no force or usurpation, inequality can
only arise in a system (open or closed) either because of redistribution or
if some individuals receive more wealth (in aggregate) over time compared
to others. In other words, microscopic transactions, broadly defined, allow
us to understand the evolution of macroscopic properties such as inequa-
lity. We note that questions of wealth and income inequality play a major
role in economics, with entire books written on the subject over the deca-
des (Atkinson, 2016; Piketty, 2015). This paper is not meant to comment on
specific economic policies; but rather, to show that inequality can arise natu-
rally in a system even from the implementation of very local incentives and
strategies.
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Model: Strategic Agent Network

The model of transacting agents, called a strategic agent network (SAN), is
fundamentally defined in this paper as an undirected graph G= (V, E), where
V is the set of nodes or vertices, and E is the set of undirected edges. Based on
prior discussion, nodes should be thought of as individuals or users (‘agents’)
who are aiming to transact with one another given the Prisoner’s Dilemma
payoff matrix in Figure 1. The transactions are constrained by the structure
of the network i.e., a node cannot transact with another node unless it is dire-
ctly linked to it via an edge. Sociologically, the edges represent pre-existing
relationships that lead to higher likelihood of transactions occurring.

Figure 1: The Prisoner’s Dilemma payoff matrix that can be used as a basis for
simulating transactions between any two agents, with a clear incentive and reward
structure.

To understand how this framework can be used to simulate transactions,
let us consider an example SAN in Figure 2. This SAN looks like an ordinary
social network, but each agent is now endowed with a strategy. For exam-
ple, some agents may be naturally inclined to always cooperate, while others
may always defect. Many such strategies have been developed and tested in
the game theory literature exploring the Prisoner’s Dilemma. In the exam-
ple, all strategies are deterministic and fixed, but in a more complex setting,
agents could be adaptive in their adoption of strategies (e.g., in response to
increasing or decreasing payoffs), and strategies could be stochastic. A naïve
example might be an agent who randomly chooses to cooperate or defect
whenever they are given an opportunity to transact.

An actual simulation on this network requires certain decisions to be made
that depend on both the experiment and research goal. A robust methodo-
logy might be to first determine an ‘ordering’ on the nodes. Considering the
example in Figure 2, suppose the ordering is [A, B, C, D, E] and the system
is perfectly equal i.e., all nodes begin with 100 resource-units (e.g., dollars)
each. In the simulation, we traverse the nodes in the order above per iteration.
For a given node, we randomly sample a neighbouring node and conduct a
transaction experiment. Suppose that, for node A, we sample its neighbour
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Figure 2: An example of a simple strategic agent network (SAN) where an agent choo-
ses to always cooperate or defect (C or D), as shown above the node. We assume that,
initially, each agent has 100 resource-units (e.g., dollars) and there is perfect equality
in the network.

node C. Since node A cooperates, and node C defects, node A loses three of
its units to node C (see payoff rules in Figure 1). Next, we move on to node
B, for whom we randomly sample a neighbour (say, node D). A similar pro-
cess applies. The details for a complete iteration (ending with node E), are
shown at the side of Figure 3, with the resulting network. In the next itera-
tion, we return to the beginning of the list and start the same process again.
Because neighbours are randomly sampled, A does not have to necessarily
transact with C in the next round. For similar reasons, a node may also end
up participating in more than one transaction per iteration.

Figure 3: The resulting network (starting from the network and initial conditions in
Figure 2) after a single round of simulation when all nodes have been sampled exactly
once, and engaged in exactly one transaction with a randomly sampled neighbouring
node (details provided in main text, along with the ‘log’ of transactions on the right
side). We assume that, when both nodes cooperate, or both defect, no resource-units
are exchanged between the two.

The sampling and transaction procedures described above are not the only
ways to conduct such a simulation using a SAN, but it has the advantage of
being ‘fair’ in terms of the average number of transactions per node. This
is especially important in real-world scale-free networks where some nodes
may havemany neighbours. Onemight argue that such nodes should have the
benefit of conducting ‘more’ transactions; statistically, this is indeed the case,
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because each of the (high-degree) node’s neighbours have an opportunity to
sample the node when it is their turn to transact. Others may argue that
each possible transaction should have equal probability of being conducted,
and the number of transactions per round should be experimentally fixed,
rather than being bounded by the total number of nodes (since each node
is traversed once in the simulation algorithm suggested earlier). A different
sampling procedure (at the level of edges, rather than nodes) would then
apply.

Indeed, when conducting a simulation on a proper dataset, several other
details also need to be worked out. If an agent is depleted of resource-units,
should that agent be removed from the network? Should the system be allo-
wed to be closed (so the sum of resource-units across all nodes remains
constant over time) or should an external entity be modelled that leads to
increase or decrease of net overall wealth over time (this is especially relevant
when both nodes cooperate, or both defect, as Figure 1 suggests that both
should be gaining or losing in wealth as a consequence)? How often should
agents be allowed to change their strategy (if at all), and how much are they
allowed to observe the dynamics of the overall system (e.g., should perfect
information be assumed, as might be the case if the network were modelling
a small community where reputations are well known)? These details allow
for degrees of freedom, depending both on the research question being inve-
stigated and analytical setting assumed or modelled. However, underlying all
of these variants, two tenets of the model always hold:

• First, each node in the network is interpreted as an agent making decisions
under uncertainty.

• Second, given the decisions of two agents, a game-theoretic payoff matrix
is used to determine distribution or redistribution of wealth between the
two agents.

Note also that the details and variants mainly concern microscopic proper-
ties of the network. Some of these properties may be global (e.g., the payoff
matrix, as well as initial conditions) but all are applied and interpreted in
the local neighbourhood of the agent. However, the quantity of interest in
running a simulation over a large enough number of iterations is typically
macroscopic, making the model an ideal one for investigating the impacts
of strategy and incentive in complex networked systems. As discussed sub-
sequently, in our own preliminary experiments, we focused on how, and to
what extent, inequality increases in the system because of this network of
transactions being conducted over time.

Returning to our goal of modelling inequality, we can run the per-node
traversal simulation for a large number of iterations (say, 1000 or until
convergence i.e., resource-units quantities cease to be exchanged between
nodes), and at the end of each iteration, compute theGini Coefficient, which
is a real value that ranges from 0 (perfect equality, which is the initial state of
the network before the first iteration begins) and 1 (perfect inequality, where
one individual has all the resource-units). A full formula and explanation
may be found in (Lambert and Aronson, 1993).
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Figure 4: The resulting inequality (measured on the y-axis using the Gini Coefficient)
after each iteration (x-axis) on a real-world Bitcoin network under different conditions
of strategic-agent mixtures (D:C:T:R = 1:1:1:1 on the top, and D:C:T:R = 1:2:3:2 on the
bottom). In both cases, the structure of the network is fixed and static. D, C, T, and R
define the always defect, always cooperate, tit-for-tat, and randomly defect / cooperate
strategies, respectively.

Using a real-world Bitcoin transaction network (Kumar et al. 2016), with
more than 5,800 nodes and 35,000 edges, we ran a simulation to demonstrate
how the model can give us different descriptions and evolution of inequality.
As shown in Figure 4, when nodes are randomly assigned (at the beginning of
the simulation) to have fixed strategies of always defect (D), always cooperate
(C), tit-for-tat (T) which is a well-known agent detailed in (Rapoport, 2015),
and randomly select between cooperate and defect with 50% probability (R),
we find that inequality rises initially but then declines before starting a slow
ascent again. However, when we change the proportions of the four agents
in the proportion D:C:T:R = 1:2:3:2; namely, 12.5% of randomly selected
agents (note that this assignment only occurs once at the beginning of the
simulation, and is then fixed throughout the simulation) are D, while 25%
each are C and R, while the remainder (37.5%) are T, inequality dips only
briefly before eventually beginning a steep ascent and nearly crossing 0.6 by
the thousandth iteration. The simulation shows that, even after controlling
for the network structure, the evolution of inequality also depends on the
mix of strategies in the network.
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CONCLUSION

We proposed and conducted a systematic methodology that uses principles
at the intersection of game theory and network science to simulate and quan-
tify inequality in a complex system of inter-connected, transacting agents.
Our model specifically relies on nodes in a complex network having ‘stra-
tegies’ resulting in ‘local’ transactions and redistribution of resource units
that ultimately yield interesting ‘macroscopic’ trends such as rising inequa-
lity. An important avenue for future research is to consider the functions that
govern the Gini Coefficient distributions shown in Figure 4, and the theoreti-
cal derivation of those functions. It may also be valuable to consider applying
the Gini Coefficient in dynamical versions of network growth models, where
the network’s nodes and edges are themselves not static, but allow for inco-
ming nodes and edges with each iteration. In essence, this would require us
to model two kinds of dynamic behaviour: the transactional behaviour that
we explored in this article, and the edge-formation behaviour that is often
used to explain the scale free degree distributions of the kinds of networks
employed in this paper. The latter tends to draw on more psychological the-
ories of behaviour, such as a preference for new nodes to ‘attach’ to nodes
that (already) have relatively high degree. Some work in game theory has
attempted to explain edge formation using transactions, but we hypothesize
that both mechanisms (preferential attachment and game-theoretic model-
ling of cooperative-competitive transactions) can together be more fruitful in
producing a richer, more accurate and more theoretically satisfying model of
interactive human systems.
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