
Human Interaction and Emerging Technologies (IHIET 2023), Vol. 111, 2023, 278–284

https://doi.org/10.54941/ahfe1004034

Investigation of Weaknesses in Typically
Anomaly Detection Methods for
Software Development
Hironori Uchida1, Keitaro Tominaga2, Hideki Itai2, Yujle Li1,
and Yoshihisa Nakatoh1

1Kyushu Institute of Technology, 1–1 Sensuicho, Tobata-ku, Kitakyushu-shi, Fukuoka
Prefecture, Japan

2Panasonic System Design Co., Ltd., 3-1-9, Shinyokohama, Kohoku-ku, Yokohama-shi,
Kanagawa Prefecture, Japan

ABSTRACT

Software systems are rapidly increasing and diversifying due to technological innova-
tions such as IoT, artificial intelligence, and blockchain. Accordingly, automatic analysis
of software logs has recently attracted particular attention as a research area to ensure
system reliability. Currently, in the research domain, anomaly detection in text logs
using CNN, LSTM, and Transformer-based DNN models has shown high accuracy of
over 90%. However, contrary to these excellent results, there are reports that it has not
been used in the field of the software development field. We predict that the reason
for this lies in the way the models are evaluated and, in the datasets, so we investigate
using a representative anomaly detection model and the common dataset BGL. First,
we investigate the effect of the splitting ratio of the dataset. As a result, we confirm
that the accuracy decreases as the number of unknown anomaly logs increases. As
a result, we identify features that are over-learned in all supervised learning models.
In addition, we validate the generality of the model with the validation datasets and
learning curves. The results show signs of overfitting in both supervised and unsuper-
vised learning models. These results suggest that the composition of the dataset used
affects the accuracy of the log-text anomaly detection model. Therefore, we plan to
create a dataset with multiple anomaly patterns based on the logs used in the software
development domain and create a model that can detect anomalies with the created
dataset.

Keywords: Anomaly detection, Software log, Log analysis, Deep learning

INTRODUCTION

Due to technological innovations such as IoT, AI, and blockchain, software
systems are rapidly increasing and diversifying. Accordingly, automatic anal-
ysis of software logs has recently attracted particular attention as a research
area to ensure system reliability. Currently, in the research domain, anomaly
detection in text logs has shown high accuracy of over 90% (Le et al., 2022)
using CNN,LSTM, and Transformer-based DNNmodels. However, contrary
to these excellent results, there are reports that it has not been used in the field
of software development field (Chen et al., 2022).

© 2023. Published by AHFE Open Access. All rights reserved. 278

https://doi.org/10.54941/ahfe1004034


Investigation of Weaknesses in Typically Anomaly Detection Methods 279

One of the reasons for this is that in the field of software logging anomaly
detection, there are many parameters related to experimental methods. For
example, when dividing a dataset, you can shuffle all the datasets first, then
divide them into a test dataset and a training dataset, or not.When the dataset
is shuffled in advance, log data in chronological order are mixed, so logs with
various chronological patterns, regardless of past and future, are sorted into
the training and test datasets. In addition, there are two options for calculat-
ing anomalies: by session grouping or byWindow grouping. Session grouping
divides time-series log data by time (e.g., every 6 hours), while window group-
ing divides data by fixed windows and slides (e.g., window 10, slide 1).When
comparing the accuracy of session grouping and window grouping, it has
been reported that window grouping is less accurate (Le et al., 2022). This is
thought to be because window grouping is more difficult. After all, it requires
a calculation of anomalies in finer units.

Since the software is improved every day, considering the use of anomaly
detection systems in the development field, it is necessary to be able to detect
anomalies in unlearned logs and as small a unit as possible.

Therefore, we conducted experiments with the following two objectives.

1. Verification of accuracy with different data split ratios. We can validate
accuracy with varying proportions of unknown logs in the test data set.

2. Experiments using the Validation dataset and evaluation of overlearning
using learning curves. The benchmark study has not been used in the
validation dataset.

EVALUATED MODELS

In the field of log anomaly detection, there are many models including super-
vised learning (CNN (Lu et al. 2018), LSTM (Zhang et al. 2019)) and
unsupervised learning (Transformer (Nedelkoski et al. 2020)). In this exper-
iment, we evaluated three models - CNN, LSTM, and Transformer - from
the Toolkit published by Chen et al. (Chen et al., 2022), which comprises
six representative anomaly detection methods. This Toolkit allows for flex-
ibility in model setup, including the ability to modify the loss function and
determine whether or not to incorporate semantic information from the logs.
We exclusively utilized sequential information in this experiment since our
experimental setup lacked the necessary computational resources to handle
semantic information. Notably, Chen et al. reported comparable accuracies
with and without semantic information.

1. Supervised Models
Convolutional Neural Network (CNN):
The input logs are converted to Id and then to vectors using logkey2vec,
which are subsequently fed into the CNN. According to their findings,
they achieved an F-measure of 0.98 on the HDFS dataset. Attentional
Bidirectional Long Short-Term Memory (BiLSTM):
This approach represents log events as fixed-dimensional semantic vec-
tors and employs an attention-based Bi-LSTM classification model to
detect anomalies.



280 Uchida et al.

2. Unsupervised Models
Transformer:
Existing approaches lack generalization to new, unseen log samples. To
overcome this issue, they proposed a novel anomaly detection method,
Logsy, based on a self-attention encoder network for hemispherical classi-
fication. They formulated the log anomaly detection problem to discrim-
inate between normal training data from the target system and samples
from an auxiliary log dataset easily accessible from other systems.

EXPERIMENTAL METHOD

1. Dataset:
This experiment used the BGL dataset collected on the commonly used

Blue Gene/L supercomputer system. The log data is tagged with anomaly
logs. The dataset is from the Loghub (He et al. 2020), repository, which
provides a large collection of log datasets for log analysis by AI.

2. Dataset Split Ratio:
An Evaluation was conducted using the following three patterns of

data set proportions.

2.1. Training dataset : Test dataset = 90[%] : 10[%]
2.2. Training dataset : Validation dataset : Test dataset = 80[%] :

10[%] : 10[%]
2.3. Training dataset : Validation dataset : Test dataset = 90[%] :

5[%] : 5[%]

In unsupervised learning model experiments, data with abnormal labels
were excluded from the training data.

3. Accuracy Evaluation Method:
In the accuracy comparison, the accuracy of anomaly detection on

the test data is verified using each model after training. Each model
is evaluated for classification performance using the F-measure value;
The F-measure is an evaluation index that indicates the balance between
detection accuracy and the number of anomaly detections. Here, the
F-measure is computed as follows.

Precision =
TP

TP+FP
(1.1)

Recall =
TP

TP+FN
(1.2)

F −measure =
2 · Precision · Recall
Precision+Recall

(1.3)

Where,
TP: Anomaly instances correctly classified by the model
TN: Normal instances correctly classified by the model
FP: Normal instances misclassified by the model
FN: Abnormal instances misclassified by the model



Investigation of Weaknesses in Typically Anomaly Detection Methods 281

4. Learning Curve:
Each set of training consisted of one epoch and was evaluated for accu-

racy using training and validation data. The study range included epochs
1 through 10. In experiments without a validation set, the test data was
evaluated as the validation set.

5. Anomaly Detection Method
The flow of the anomaly detection method is shown in Figure 1.
First, logs are converted to a template by Drain (He et al. 2017). Next,

Templates are grouped with fixed window = 10 and sliding = 1. After
converting them to Sequential Vectors depending on the model, Deep
Learning input is used to detect anomalies (see Figure 1).

Figure 1: The flow of the anomaly detection method.

EXPERIMENTAL RESULTS

We conducted five trials to eliminate errors in each experiment and evaluated
the results using their average.

1. Dataset Split Ratio

Results showed that a higher proportion of the training dataset resulted
in higher accuracy (see Table 1 and 2). While this could be attributed to an
increase in the number of learning models, we also investigated the number
of unknown logs that could affect the results. Table 3 presents the results of
this investigation. The Anomaly detection method registers logs in a log2id
dictionary during the learning phase, and all logs outside the dictionary are
assigned the same id = 0 during the testing phase. We observe a significant
decrease in the number of anomaly logs from 9 to 3, and the total number of
anomaly logs decreased greatly from 24284 to 3 (see Table 3).



282 Uchida et al.

Table 1. Results of dataset with sprit ratio = 80:10:10 (without validation / with
validation).

Model F-measure Recall Precision

CNN 0.217/0.211 0.124/0.121 0.886/0.844
LSTM 0.211/0.206 0.118/0.116 0.981/0.940
Transformer 0.160/0.159 0.964/0.960 0.087/0.087

Table 2. Results of dataset with sprit ratio= 90:5:5 (without validation / with validation).

Model F- measure Recall Precision

CNN 0.978/0.976 0.958/0.958 0.999/0.994
LSTM 0.978/0.211 0.957/0.118 0.999/0.981
Transformer 0.250/0.249 0.912/0.912 0.145/0.144

Table 3. Types of logs included in the test dataset.

Dataset Sprit Ratio Normal types Anomaly types Total anomaly logs

80:10:10 681 9 24284
90:5:5 452 3 3

Therefore, we can infer that the high evaluation accuracy in the 90% train-
ing data dataset is due to the extremely low number of anomaly logs. In
contrast, the results of the dataset with 80% training data showed a sig-
nificantly low recall score, indicating that more anomalies were incorrectly
predicted as normal. This result suggests the onset of overfitting.

We can also see that Transformer, which is supervised learning, has low
Precision, while CNN and LSTM, which are supervised learning, have low
Recall (see Table 1 and 2).

2. Evaluation Using Validation Dataset and Learning Curve

The results are presented in Figure 2 through Figure 5.
Upon examining the learning curve, it is observed that the accuracy

remains stable after the first epoch, indicating signs of overfitting (see
Figure 2 through Figure 5).

It can be observed that the accuracy of LSTM drops significantly when
using the Validation dataset. Moreover (see Table 2), the learning curve

Figure 2: Learning curve for CNN with split ratio of 80: 10: 10.



Investigation of Weaknesses in Typically Anomaly Detection Methods 283

Figure 3: Learning curve for CNN with split ratio of 90 5 5.

Figure 4: Learning curve for LSTM with split ratio of 80: 10: 10.

shows that the model is overfitting to the validation dataset (see Figure 2
through Figure 5).

Figure 5: Learning curve for LSTM with split ratio of 90 5 5.

CONCLUSION

In this experiment, we investigated the reasons why anomaly detection meth-
ods using DNN are not widely used in development sites. Current typical
anomaly detection models have a high probability of judging an anomaly log
as normal whenWindow grouping is used. In addition, when Validation data
is used, the model over-fits the Validation data, and the learning curve is sta-
ble from the first epoch onward. Based on the above results, it is highly likely
that overlearning is occurring. However, since only one type of BGL data set
was evaluated in this experiment, it is impossible to determine whether it is
truly overlearning or not. In the anomaly detection area, only one or two
data sets for each type make multifaceted evaluation difficult. Therefore, we
plan to create a wide variety of datasets and investigate the feasibility of using
many anomaly detection systems in the development field.



284 Uchida et al.

ACKNOWLEDGMENT

This work is supported by a grant from Panasonic System Design.

REFERENCES
Chen. Z, Liu. J, Gu. W, Su. Y, and Lyu. M, (2022) “Experience Report: Deep

Learning-based System Log Analysis for Anomaly Detection”, Arxiv Website:
https://arxiv.org/pdf/2107.05908.pdf

He. P, Zhu. J, Zheng. Zm and Lyu. M (2017) “Drain: An Online Log Parsing
Approach with Fixed Depth Tree”, 2017 IEEE International Conference on Web
Services (ICWS).

He. S, Zhu. J, He. P, R. M, and Lyu. M, (2020) “Loghub: A Large Collection of
System Log Datasets towards Automated Log Analytics”, Arxiv Website: https:
//arxiv.org/pdf/2008.06448.pdf

Lu. S, Wei. X, Li. Y, and Wang. L, (2018) “Detecting Anomaly in Big Data System
Logs Using Convolutional Neural Network”, 2018 IEEE 16th Intl Conf on D

Le. V and Zhang. H, (2022) “Log-based anomaly detection with deep learning:
how far are we?”, ICSE ‘22: Proceedings of the 44th International Conference
on Software Engineering, pp. 1356–1367.

Nedelkoski. S, Bogatinovski. J, Acker. A, Cardoso. J and Kao. O, (2020) “Self-
Attentive Classification-Based Anomaly Detection in Unstructured Logs” 2020
IEEE International Conference on Data Mining (ICDM).

Zhang. X, Xu. Y, Zhang. H, Dang. Y, Xie. C, Yang. X, Chen. J, He. X, Yao. R,
Lou. J, Chintalapati. M and Shen. F, (2019) “Robust log-based anomaly detection
on unstable log data”, ESEC/FSE 2019: Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 807–817.

https://arxiv.org/pdf/2107.05908.pdf
https://arxiv.org/pdf/2008.06448.pdf
https://arxiv.org/pdf/2008.06448.pdf

	Investigation of Weaknesses in Typically Anomaly Detection Methods for Software Development
	INTRODUCTION
	EVALUATED MODELS
	EXPERIMENTAL METHOD
	EXPERIMENTAL RESULTS
	CONCLUSION
	ACKNOWLEDGMENT


