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ABSTRACT

In the design optimization process of the control room in a nuclear power plant, per-
sonnel workload is an important evaluation indicator. A well-designed control room
can effectively reduce the workload of operators during their work processes, improve
work outcomes and efficiency, and reduce the possibility of accidents caused by
human errors. Currently, subjective evaluation methods are mainly used to evalu-
ate personnel workload in related research. These methods are simple and easy to
implement with short evaluation times, but they are highly subjective and difficult to
perform a comprehensive and objective quantitative evaluation. Physiological measu-
rement method is a research approach that observes and measures the physiological
data changes related to behavior in order to analyze the state of individuals, providing
more objective and reliable quantitative results. With the advancement of sensor and
computer technology, it has become a hot research topic. Among them, physiological
characteristics such as electroencephalography (EEG) and eye movement are widely
studied, and their relationship with the psychological and mental states of individuals
have been fully medically validated. This paper proposes a method for evaluating the
workload of nuclear power plant control room operators by collecting EEG and eye
movement physiological signals and analyzing their features using advanced mach-
ine learning algorithms. It also explores evaluation methods for control room design
achievements.

Keywords: Personnel workload evaluation, Eye movement, EEG, Nuclear power plant control
room

INTRODUCTION

With the gradual improvement of the design level of nuclear power plant
main control rooms, as well as the continuous maturation of digital and intel-
ligent technologies, the human-computer interaction (HCI) design within the
main control room has received increasing attention. HCI refers to the pro-
cess of information exchange and instruction issuing between human beings
and intelligent electronic devices such as computers, and involves knowledge
from multiple fields such as information science, biomedical science, psych-
ology, and design, possessing significant significance in the development of
modern information technology. Better HCI design can ensure the functional
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and usability realization of the system, improve user work efficiency and
sense of achievement, and reduce the risk of accidents caused by mistakes
during the operation process. Due to the special requirements of the nuclear
power plant operator tasks, good main control room HCI design is of great
significance to the safety and efficient production of nuclear power plants,
and how to accurately quantify and evaluate the design results interface as a
basis for iterative improvement of design outcomes has been a hotspot in the
HCI design field.

In recent years, with the rapid progress of human physiological data
acquisition and analysis technology, it has become possible to use human phy-
siological characteristics to analyze user’s operating behavior. More and more
scientific research institutions and commercial organizations have started to
use physiological data collection technologies such as electroencephalogra-
phy (EEG), electrocardiography (ECG) and eye tracking as an evaluation
system in the design and development process, and have achieved many
practical application values in many fields with strong correlations to user
behavior, including aviation, aerospace, navigation, transportation, sports
science, and game design.

As a means of evaluating human-machine interaction in control rooms,
physiological feature analysis holds significant innovative value for quanti-
tatively evaluating design effectiveness and user experiences. In recent years,
there have been a few cases in the nuclear power field utilizing physiolo-
gical feature research methods to analyze personnel workload and evaluate
control room design. However, the research direction and methods are still
limited, and mostly focus on a single type of physiological feature analysis,
with accuracy needing improvement. In this paper, we will collect EEG and
eye-tracking physiological signals and perform multimodal feature analysis
using advanced machine learning algorithms to evaluate the workload of con-
trol room operators in nuclear power plants, and explore evaluation methods
for control room design based on this analysis.

Technical Background

An increasing number of researchers have recognized the advantages of
synchronously recording eye movement data with EEG or other electrophy-
siological equipment. Single physiological data is no longer sufficient for
current research needs. The primary benefit of combining eye movement
technology with EEG is the ability to use eye movement data as a chan-
nel to correct the artifacts generated by eye movements. Blinking and eye
movement itself (even tiny microsaccades) can have a profound impact on the
EEG signal and cause serious problems for subsequent analysis. Eye move-
ment in natural settings is an active process involving several saccades per
second. However, during most EEG data collection, participants are asked to
blink as little as possible and record the process of long-term gaze fixation
on the screen, which leads to conscious brain activity and less-than-perfect
recording. On the other hand, because eye movement data itself reflects beh-
avior, it cannot directly reflect cognitive and thinking processes. Therefore,
eye movement research requires good experimental design to interpret eye
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movement data correctly, or needs to be combined with interviews, retrospe-
ctive testing, and other methods to reflect cognitive and thinking processes.
EEG research compensates for this deficiency in eye movement research and
can be naturally combined with eye movement research. This combination
can not only accurately interpret eye movement data but also objectively and
accurately reflect the psychological processes of participants. In addition,
simultaneously recording eye movement and EEG data has other purposes,
such as using eye movement to monitor eye drift, control fixation, and mea-
sure saccade reaction time (Plochl et al. 2012). From the results, it can be
seen that the performance obtained by combining two different modalities
is often stronger than using a single modality. In the study of specific pro-
blems such as emotion recognition, eye tracking and EEG each have their
advantages in identifying different types of emotions. Due to the complemen-
tary nature of the recognition characteristics in both modalities, the use of
modal fusion techniques such as bimodal deep auto-encoder can significantly
improve classification accuracy (Zhao et al. 2019).

Experiment Design

Synchronization of signal data is an important and inevitable technical issue
in the study of multimodal physiological signals. If the timestamp of the trig-
gering event fails to ensure correct synchronization, the results obtained may
be completely useless. Currently, there are relatively mature ways of synchro-
nizing eye tracking and electroencephalogram (EEG) signals. One of the most
common examples is shown in the Figure 1, where by connecting 2, 3, and
4 in the local network, information can be sent from a Stimulus PC through
the Ethernet port to the main hosts of eye tracking and EEG acquisition to
achieve synchronization.

EyeLink Camera

NetStation
Recording
B

Ethernet Link between Network Switch and Stimulus PC

Ethernet Link between Network Switch and EyeLink Host PC
Ethernet Link between Network Switch and Netstation PC
Fibre optic Link between Network Switch and EGI Amplifier

(Optional) EGI Trigger Cable from Display PC or EyeLink Host PC
to EGI Amplifier

00000

Figure 1: Example of synchronizing eye tracking and EEG signals. (Adapted from
Eyelink, 2019.)
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Eye trackers can generally be divided into three types: desktop, glasses, and
VR plug-in. The desktop eye tracker camera is located below the screen, and
the movement of the head can cause a change in the relative position between
the eyeball and the camera, affecting calibration. Therefore, in experiments, it
is necessary to keep the head’s position basically fixed. However, in the actual
working environment of the nuclear power plant control room, the operator’s
line of sight often needs to switch between multiple screens, and they need to
repeatedly lower their head to check various paper documents. The desktop
eye tracker obviously does not meet the experimental scene requirements.
The camera of the glasses eye tracker is fixed on the frame, and its relative
position with the eyeball is fixed, making it more suitable for experiments
with larger head movement amplitudes.

An experiment was conducted based on the design of two different moni-
toring pages used by operators in the actual main control room of a nuclear
power plant. Data was collected from the experiment to compare the advan-
tages of different design formats in information transmission efficiency,
serving as the evaluation basis for interface interaction level. The selected
pages are shown as in the figure 2 and 3.

Multiple groups of subjects were selected to conduct the experiment. The
subjects had a certain understanding of the daily operation and maintena-
nce work of nuclear power plants, and their professional cognitive level
was further quantitatively distinguished by analyzing factors such as their
emotions during testing through the collected electroencephalogram (EEG)
signals.
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Figure 2: Previously used system pages.
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Figure 3: Currently used system pages.

RESULTS
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The eye movement and data collected during the experimental process are
processed and presented in Table 1. In the EEG data, a series of features
were extracted from the raw waves such as alpha and beta by referencing
similar studies that utilized alpha/beta features (Kim et al. 2020). By uti-
lizing this data for machine learning classification and combining it with
subjective ratings of the operator’s state during the task, a model can be esta-
blished between the operator’s work state and physiological indicators for

subsequent evaluation.

For the two selected different page designs, eight tasks of varying difficulty
were arranged for each, divided into two stages. The eye-tracking trajectory

Table 1. Partial subjects’ EEG and eye movement physiological data.

ID 1 2 3 4 5

name deng duan xu li wang
Power Peak(dB)  24.05 31.93 29.1 27.03 24.94
alp 2.56 1.87 1.94 -0.2 0.97
orp 10.03 8.78 8.92 10.47 9.3
(a+0)/p 10.74 9.66 9.71 10.83 9.9
(a+8)/(a+p) 626 541 5.62 7.92 6.38

0/ (a+p) 5.55 4.54 4.83 7.56 5.78
SMR(dB) 8.47 16.54 10.3 7.8 5.64

Ave Blink(s) 0.094214  0.126666  0.131130  0.119722  0.139076
Ave Fixation(s) 0.302796  0.534362  0.230345 0.286932  0.447363
Ave Saccades(s) 0.032321  0.049403 0.041844  0.043686  0.040327
Self Rating 6 8 5 7 8




Human-Computer Interaction Evaluation Method for Nuclear Power Plant Control Room 407

recorded by the eye tracker and the operation records of the subjects in the
system were used to comprehensively analyze the time taken by the subje-
cts to complete each stage of the task, as shown in Table 2. The obtained
time can be used as the main basis for evaluating operator work performa-
nce and can also be used to compare the difficulty gradient of the designed
tasks.

Different machine learning algorithms were chosen to establish classi-
fication models. The accuracy of the models was evaluated using cross-
validation, and the results are shown in Table 3. Finally, the SVM algorithm
with a three-time kernel function was selected to establish the model.

Table 2. Subjects’ result of the test task.

1.622 1.528 2.883 2.398 3.081
1.389 0.481 1.525 2.978 5.471

mission8.1
mission8.2

ID 1 2 3 4 5
name deng duan Xu li wang
pagelave(s) 10.12426 9.4655 11.34957 8.787437 6.851687
mission1.1(s) 13 13.921 20.116 5.23 7.307
mission1.2(s) 7.88 9.22 NA 9.131 5.395
mission2.1(s) 24.425 12.133 13.298 15.613 12.533
mission2.2(s) NA 11.43 2.71 12.083 1.197
mission3.1(s) 6.932 10.87 25.42 8.484 3.63
mission3.2(s) 5.869 8.76 NA 18.633 4.691
mission4.1(s) 12.119 10.82 4.366 7.653 4.851
mission4.2(s) 8.535 9.31 11.853 2.912 4.182
mission5.1(s) 12.557 1.359 6.799 7.815 4.467
mission5.2(s) 9.238 1.481 11.393 10.261 15.407
mission6.1(s) 11 4.271 5.208 8.252 5.505
mission6.2(s) 3.31 11.129 10.568 2.871 7.224
mission7.1(s) 5.324 10.085 22.659 4.454 1.009
mission7.2(s) 11.256 13.795 4.227 12.613 8.459
mission8.1(s) 19.316 21.446 2.043 12.702 9.154
mission8.2(s) 1.103 1.418 18.234 1.892 14.616
page2ave(s) 2.294 2.09675 3.041857 2.812375 2.665125
mission1.1(s) 12.423 0.887 NA 3.132 11.99
mission1.2(s) 2.323 4.306 NA 5.692 0.812
mission2.1(s) 2.067 1.127 11.762 2.636 2.389
mission2.2(s) 0.234 2.155 2.528 1.382 0.801
mission3.1(s) 2.895 2.308 2.419 2.113 1.182
mission3.2(s) 0.947 1.386 2.062 2.907 1.584
mission4.1(s) 2.294 3.914 2.781 2.07 1.428
mission4.2(s) 0.709 4.384 0.815 0.998 1.349
mission3.1(s) 1.726 2.093 2.079 2.428 1.893
mission5.2(s) 0.689 1.96 2 2.754 2.948
mission6.1(s) 2.115 1.805 3.769 4.713 1.649
mission6.2(s) 2.32 1.72 2.451 3.573 2.331
mission7.1(s) 1.964 2.103 4.183 3.953 1.718
mission7.2(s) 0.987 1.391 1.329 1.271 2.016

(s)

(s)
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Table 3. Algorithm modeling results.

Model Kernel Accuracy (%) Precision Recall F1 Score

SVM Linear 74.4 0.89 0.67 0.76
Quadratic 82.1 0.89 0.76  0.82
Cubic 84.6 0.83 0.83 0.83
Fine Gaussian 82.1 0.72 0.87 0.79
Medium Gaussian 71.8 0.83 0.65 0.73

Random / 74.4 0.89 0.67 0.76

Forest

ANN Narrow Neural Network RELU  74.4 0.72 0.72  0.72
Medium Neural Network 74.4 0.72 0.72 0.72
Wide Neural Network 74.4 0.78 0.70 0.74
Double-layer Neural Network 74.4 0.78 0.70  0.74

CONCLUSION

From a results perspective, graphic display page design can efficiently convey
information and enable operators to complete tasks more quickly and effi-
ciently, compared to numeric page design, thereby enhancing interaction
efficiency.

In this study, we established a model between EEG and eye movement
physiological indicators and subjects” work states, achieving high accuracy.
In the process, we found that the fusion of both indicators produced better
results than a single physiological indicator, validating the current trend of
multi-modal physiological indicator research.

We explored the relationship between subjects’ physiological indicators,
work states, and work performance, and thereby established an evaluation
system for interaction design effectiveness, providing insights for future rela-
ted research. With the rapid development of machine learning technology,
more advanced algorithms can improve the accuracy of models and allow
for more accurate analysis of physiological indicators to reflect work states
and interaction effects.
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