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ABSTRACT

We deal with a new decision problem, namely, the problem of scheduling prioritised
trains and nonprioritised trains in a railway network. The difference between these two
types of trains is the no-wait constraint, which should be satisfied by the prioritised
trains. However, the nonprioritised trains may remain on the current section until a
section on the routing becomes available. Our objective is to find a feasible schedul-
ing that minimize the total tardiness. It has been showed that this problem is NP-hard,
and it can be considered as a job shop scheduling problem with blocking and no-wait
constraints. A mathematical integer programming formulation is given, and numer-
ical experiments are provided for evaluating the proposed approach. To the best of
our knowledge, we are the first who deal this trains scheduling problem with total
tardiness criterion, which is the main contribution in this paper.

Keywords: Trains scheduling, Priorities, Job shop, Blocking, No-wait, Total tardiness,
Mathematical model

INTRODUCTION

We have addressed the problem of scheduling prioritised trains and non-
prioritised trains in a single-track railway, when the prioritised trains such
as express trains should pass through network continuously without any
interruption, this imposes a no-wait constraint. However, the nonpriori-
tised trains are allowed to pass though the next section only if available,
this implies the blocking constraints. The network railway consists of sta-
tions, single rails or several parallel rails and sidings. Each train has its
path and a duration for every part of its path, with an earliest departure
time, and a desired arrival time. At any time, each train can occupy at most
one single track, as far as no more than one train can occupy each single
track.

The trains scheduling problem was treated in a large variety of papers
and projects of the literature. Cai and Goh (1994) classified a simple form
of a single-track trains scheduling problem to be NP-complete. They devel-
oped a heuristic algorithm based on a local optimality criterion for the trains
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scheduling in a single-track railway with the assumption that all trains mov-
ing in the same direction must have the same speed and terminating siding.
Szpigel (1973) was the first who identified the similarities the first who iden-
tified the similarities between a job shop problem and the trains scheduling
in a single-track railway. The former was solved in Szpigel (1973) using a
branch and bound algorithm, the initial linear programming excluded the
order constraints. Dorfman and Medanic (2004) used a discrete-event model
to schedule the traffic on a railway network. Their model was computa-
tionally efficient and generated near optimal schedules with respect to a
number of criteria related to travel time. Zhou and Zhong (2004) dealt with
a double-track trains scheduling problem with multiple objectives. A branch
and bound algorithm with an effective dominance rule is developed to gener-
ate Pareto solutions for the bicriteria scheduling problem, and a beam search
algorithm with utility evaluation rules is used to construct nondominated
solutions. Caprara et al. (2006) described the design of a train timetabling
system that takes into account several constraints that arise in real world
applications. Zhou and Zhong (2007) used a resource constrained project
scheduling for a single-track timetabling problem. They developed a branch
and bound algorithm in order to obtain a feasible trains timetable with a
guaranteed level of the optimality. Carey and Crawford (2007) developed
heuristic algorithms to assist in the task of finding and resolving the con-
flicts in draft train schedules. Burdett and Kozan (2010) interpreted the trains
scheduling in terms of a job-shop problem with parallel machines. A disjunc-
tive graph model was used in several algorithms with a makespan objective.
Liu and Kozan (2011) were the first who treated the trains scheduling prob-
lems when prioritized trains and nonprioritized trains are simultaneously
traversed in a single-track railway. A generic algorithm has been developed to
construct a feasible trains timetable in terms of the given trains order. Several
authors have been interested in particular aspects of the problem, such as the
demand for passers and we cite: Ghoseiri et al. (2004); Niu and Zhou (2013);
Niu et al. (2015); D’Ariano et al. (2008); Törnquist and Persson (2007),
Veelenturf et al. (2015). Cordeau et al. (1998) and Lusby et al. (2011)
provided an overview of different problem structures and with resolution
approaches. Recently, Lange andWerner (2018) addressed the trains schedul-
ing problem with blocking constraints, and showed that the problem of job
shop with blocking can be used to solve the trains scheduling problem for the
minimization of the total tardiness of trains. Several mixed integer program-
ming formulations based on different transformation approaches with or
without additional routing flexibility were considered by using distinct types
of decision variables. Lange and Werner (2018) and Liu and Kozan (2011)
mentioned as perspectives in their study the trains planning with blocking
and no-wait constraints, a scheduling problem that we are dealing with in
this paper.

In this paper, we propose an integer linear program based on the model
of Lange and Werner (2018) to find exact solutions. The remainder of this
paper is organized as follows. First, we define our problem and the notations
associated to its formulation. After, we present the mathematical model and
computational results. Finally, we discus some perspectives of our work.
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PROBLEM DESCRIPTION

The network considered consists of single tracks connecting the sations in the
two directions. The capacity of a single track is one unit, whereas sidings and
stations can be occupied by as many trains as they have parallel tracks. On the
other hand, each train can only occupy one track section at a time. For each
train a fixed route is predefined to travel on, and it is supposed that the train
begins and ends its journey by sections of the extremity. Moreover, an earliest
departure time at the origin and preferred arrival time at the destination are
given for every train.

The order of trains is to be determined for every track, taking into consider-
ation that prioritised and nonprioritised trains are simultaneously traversing
on a single tracks network. Prioritised trains (such as express passenger
trains) must pass from the departure to the terminal station without inter-
ruption, while the nonprioritised trains are those whose can traverse the
succeeding track only if it is available, otherwise they remain on the current
section, and are blocked until to pass through the next section. The problem
can be considered as a prioritised and nonprioritised trains scheduling prob-
lem to determine the arrival time of each train, in order to minimize the total
tardiness of trains.

It should be noted that we can observe the correspondence between this
trains scheduling problem and the job shop scheduling problemwith blocking
and no-wait constraints as shown in Szpigel (1973), Kreuger et al. (1997),
Oliveira and Smith (2000), D’Ariano et al. (2007), Liu and Kozan (2011),
Gholami et al. (2013) and Lange and Werner (2018).

More precisely, let be a set of trains traveling through railway network
having a bidirectional single tracks, stations and siding with different parallel
tracks. Trains are represented as jobs J =

{
Ji| i = 1 . . . n

}
processed on

machines M=
{
Mk| k = 1 . . .m

}
which represent tracks.

Referring to the literature:

• Sections with parallel tracks can be considered as parallel machines, in
other words each track represents one machine, and by the definition of a
train path one of the parallel tracks has to be chosen.

• The train path is considered as the technological order of the job.
• The journey of the train along its track without interruption is considered

as the job execution on machines without interruption.
• The passage of the train on the track section is represented by an oper-

ation Oij, which define the processing of the job by a machine without
interruption.

• Each job has an ordered set of ni operations Ji =
{
Oi1, . . .Oini

}
expressing

the processing order on the different machines which is already established
and known, this order translates the precedence constrains between the
operations of the same job.

• The processing times pij of the operations correspond to the travel time of
trains on track sections. Moreover, the release time ri and the due date di
of any jobs is given, which describe earliest time and desired leaving times
of the trains.
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• Jobs recirculation (recrs) has been included, provided that job can be
processes more than one way for each machine.

We note that direction of each train is represented implicitly by the tech-
nological order of the jobs on different machines, so we dispense with the
direction data of trains. The scheduling of trains is defined by the determi-
nation of the order of all jobs on machines and the starting time Sij for all
operations. The blocking situation occurring in trains is interpreted as jobs
blocking machines, when a job having completed processing on a machine,
remains on the machine until the succeeding machine becomes available for
processing. We kept the same representation of the blocking situation used
by Lange and Werner (2018), by applying starting time variables and includ-
ing blocking in additional constraints. For the no-wait constraint, a job must
be processed from the start to the completion without interruption either on
or between machines, in other words, two operations must be performed
without any interruption.

Therefore, the difference between the completion time of the last
operation of a job and the start time of its first operation is equal
to the sum of processing times of all its operations. This constraint
describes for example the case of trains carrying dangerous products that
must pass without interruption, or the express passenger trains (speed
trains).

The objective is to schedule all jobs in order to minimize the total
tardiness of jobs. The tardiness Ti of each job is calculated as follows:
Ti = max

{
0,Ci − di

}
when: Ci = Sini + pini . This problem can be classi-

fied into the NWBPMJSS that means no-wait blocking parallel machines job

shop scheduling, and denoted by: Jm|ri,di,block, recs,no−wait|
n∑
i=1

Ti.

In this paper, we consider the following assumptions:

• Each operation can be executed by only one machine at a time.
• Each machine can only process at most only one operation at a time.
• The execution of a job on a machine cannot be interruption.
• Each machine treats each job at most one times.

Disjunctive and Alternative Graph Model

The disjunctive graph proposed by Roy and Sussman (1964), used for for-
mulate the job shop scheduling problem is defined by G = (X,A ∪ E)
where:

• X denotes a set of vertices corresponding to operations of jobs. This set
contains two additional dummy vertices, which represent the start and the
end of schedule.

• A is a set of conjunctive arcs which represent the precedence constraints
between two consecutive operations of the same job. We also add con-
junctive arcs from one additional dummy vertex of the start and the first
operation of each job, and from the last operation of every job to a second
additional dummy vertex of the end
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• E disjunctive edges between every operations requiring the same machine.
A disjunctive edge can be represented by two opposite directed arcs. These
constraints are called disjunctive constraints. they forbid cycles in a clique
corresponding to a machine.

The disjunctive graph disadvantage is that it does not take into consid-
eration the intermediate buffer’s capacity between machines. A blocking
situation that should be carefully taken into account. To integrate this con-
straint, Mascis ans Pacciarelli (2007) have adopted the disjunctive graph to a
more general graph called alternative graphmachine. In the alternative graph,
that considers the blocking situations, the pair (Oij→ Ohl) and (Ohl→ Oij)
of disjunctives arcs (connecting operations requiring the same machine) is
replaced by a pair of alternative arc (Os

ij→ Ohl) and (Os
hl → Oij), where

Os
hl is the successor vertex ofOij in the same job that will be processed imme-

diately on different machine. Figures 1 and 2 show an example of the two
different graphs.

Figure 1: Dijunctive graph for 3 jobs, 3 machines JSP without considering blocking
constraint.

Figure 2: Alternative graph for 3 jobs, 3 machines JSP with blocking constraint.

MATHEMATICAL MODEL

In this section, we present the integer linear program that we use to formulate
the job shop scheduling problemwith blocking and no-wait constraint. Based
on the model of Lange andWerner (2018).We have proposed a mathematical
model to resolve the job shop scheduling problem with blocking and no-
wait constraints. The following notation is used for parameters and decision
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variables in the mathematical programming formulation for the NWBPMJSS
problem.

Parameters and Indices

n: Total number of jobs (trains)
m : Total number of machines (sections)
ni : Total number of operations in the job Ji
k: Index of machines k = 1 . . .m
A: A large number
I : Index of jobs i = 1 . . . n
j: Index of operation order in job
Oij: The jth operation of the job Ji
W: Set of jobs subject to the no-wait constraint
Opk: Set of operations executed by the machine k, k = 1 . . .m
Oi: Set of operations of the same job Ji, Oi

=
{
Oi1 . . .Oini

}
Sij : The starting time of the operation Oij
Cij : The completion time of the operation Oij
pij: The processing time of the operation Oij
di: The due date of the job Ji
ri: The release time of the job Ji.

Decision Variable

The job shop scheduling with blocking and no-wait constraints is modelled
by the use of binary decision variables.

yij,hl,k =
{

1 if the operation Oij is executed before the operation Ohl on the machine Mk
0 otherwise

Constraints

In the following, constraints (1) guaranteed that the starting time of each job
Ji ∈ J to be greater than or equals to its release time ri:

ri ≤ si1 ∀i, Ji ∈ J (1)

Constraints (2) describe the operations precedence constraints between
operations of the same job:

Sij + pij ≤ Sij + 1 Oij ∈ Oi, Oini ∀Ji ∈ J\W (2)

The no-wait constraints are the following: each operation from the jobs
Ji ∈ W must start its treatment immediately after the processing of the
precedent operation.

Sij + pij = Sij + 1 Oij ∈ Oi
\Oini ∀i, Ji ∈W (3)

The tardiness of a job is defined in Constraints (4) and (5):

Ti ≥ Sini + pini − di ∀i, Ji ∈ J\W (4)

Ti ≥ 0 ∀i, Ji ∈ J\W (5)
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Constraints (6) are aimed at operations processed by the same machine.
It imposes directly one of the two operations Oij or Ohl to be processed the
first on the machine k:

yij,hl,k + yhl,ij,k = 1 ∀ Oij,Ohl ∈ Opk avec i < h, Mk ∈M (6)

To ensure more the order expressed by constraints (6), the completion time
(Cij = Sij + pij of the operation processed the first has to be less than or equal
to the starting time of precedence operation, that’s ensured by the following
constraint:

Shl + A
(
1− yij,hl,k

)
≥ Sij + Pij ∀Oij,Ohl ∈ Opk, Mk ∈M (7)

The blockage constraints are expressed by the following inequalities:

Shl + A
(
1− yij,hl,k

)
≥ Sij + 1 ∀Oij,Ohl ∈ Opk, Mk ∈M (8)

Finally, the constraints of integrity of variables:

yij,hl,k ∈ {0, 1} ∀Oij,Ohl ∈ Opk, Mk ∈M (9)

Objective Function

Minimizing the total tardiness: Min
n∑

i = 1
Ti.

OVERVIEW OF SOME PERTINENT LITERATURE RESULTS

The computational complexity of different versions of job shop scheduling
problem is considered as an important factor in the study. Since, the job
shop scheduling problem with unlimited buffers is one of the most difficult
NP-hard combinatorial optimization problems. The job shop scheduling with
blocking (limited buffer capacity) and no-wait situations is strongly NP-hard,
and limited number of research papers are dedicated for the NWBJSSP prob-
lem. In the following paragraph, some pertinent works on the NWBJSSP are
presented.

Brizuela et al. (2001), proposed a genetic algorithm to deal the NWBJSSP
with makespan objective function. Decoding techniques that ensure no vio-
lation of the no-wait and blocking conditions were proposed as the main
contribution of their research. Van den Broek and Hurkens (2007) proposed
a new heuristic and an integer programming formulation for the NWBJSSP
with makespan objective function. The main contribution is that the pro-
posed heuristic always finds feasible solution, and the tests prove that the
found solutions have good quality. The authors reported that one of the dis-
advantages is that the computation time is increased substantially especially
if the size of the input increases.

Liu and Kozan (2011) deal with train-scheduling problems when the
prioritised trains and nonprioritized trains are traversed simultaneously in
a complex rail network. The problem is mathematically formulated by
integer programming and analysed based on an alternative graph model.
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In the first time, authors proposed a constructive algorithm to construct
the feasible train timetable, then a two-stage hybrid heuristic algorithm is
developed by combining the constructive algorithm and the local-search
heuristic. The computational experiments and real-life applications show
that the proposed two stage hybrid algorithm is able to find the prefer-
able order of trains thereby greatly reducing the makespan of the con-
structed train timetable. Louaqad et al. (2018) addressed the problem of
job shop scheduling with transportation, blocking and no-wait constraints.
Since the makespan objective function is considered, they formulated the
problem based on the model of Manne (2005) used for NWBJSSP. In
Addition, they proposed two heuristics (HC1) (HC2). Experimental results
showed that heuristic (HC2) is quite efficient in terms of obtaining feasi-
ble solutions. In addition, the comparison with MILP showed that (HC2)
heuristic found approximate solutions in reasonable times for very large
instances.

COMPUTATIONAL EXPERIMENTS

The evaluation of our mathematical model is carried out using a first set of
instances (n,m) ∈ (10, 11) used by Lange andWerner (2018), and the second
set of instances (n,m) ∈ (15, 11) , (20, 11) , we developed from the first set
(n,m) ∈ (10, 11)by duplicating some jobs with there data. Table 1 illustrates
an example of instance (n,m) ∈ (10, 11) . For more details, the reader to can
refer to Lange and Werner (2018).

Table 1. Input data information.

Ji ri di Tech. order Processing time

J1 13 30 (M10,M9,M8,M6,M5,M6,M8,M9,M11) (2,1,1,1,4,1,1,1,2)
J2 2 38 (M1,M3,M4,M6,M8,M9,M11) (4,4,12,2,2,2,4)
J3 8 37 (M1,M3,M4,M3,M2) (4,4,8,4,4)
J4 5 41 (M1,M3,M4,M6,M8,M9,M11) (4,4,12,2,2,2,4)
J5 4 40 (M11,M9,M7,M6,M4,M3,M2) (4,2,2,2,12,4,4)
J6 6 41 (M10,M9,M7,M6,M5,M3,M1) (4,2,2,2,12,4,4)
J7 11 47 (M11,M9,M7,M6,M4,M3,M2) (4,2,2,2,12,4,4)
J8 2 38 (M11,M8,M7,M6,M4,M3,M2) (4,2,2,2,12,4,4)
J9 8 26 (M2,M3,M5,M6,M8,M9,M10) (2,2,6,1,1,1,2)
L10 5 53 (M11,M9,M8,M6,M4,M3,M1) (8,4,4,4,4,8,8)

Table 2 shows numerical results for the NBJSSP obtained by by our
ILP. These results are obtained used the CPLEX 12.6 as LP solver. The
linear program using CPLEX 12.6 program were run on an Intel R
Core(TM) i 3(2.30GHz) with 4 GB RAM. The set of instances com-
prises 15 instances grouped into three subsets with respective sizes of
(n,m) ∈ (15, 11) , (20, 11) were n represents the number of jobs (trains) and
mrepresents the number of machines (sections). As assumed by Lange and
Werner (2018), the origin and the destination of the routing train are different
from each other.
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The number of jobs submitted to the no-wait constraint is different from
instances to others as it’s shown in Table 2. The first five instances having
10 jobs and 11 machines are solved optimally in a very small computation
time. The most instances of the second group of instances (n,m) ∈ (15, 11) re
even solved optimally in a considerable execution time. the 5thinstance in this
group having 2 jobs no-wait remain unresolved for more than 2 hours.

As shown in Table 2, no more instance is solved in the third group of
instances having (n,m) ∈ (20, 11). We have interrupted the running in
2 hours.

Table 2. Numerical results obtained by mathematical formulation.

Instance Nb_job_no-wait Nb_var Nb_con
∑
Ti Time

(10,11)_1 3 505 1554 138* 5.24 S
(10,11)_2 3 509 1765 249* 4.04 S
(10,11)_3 2 512 1673 203* 1.42 S
(10,11)_4 2 534 2031 252* 2.04 S
(10,11)_5 1 571 1767 260* 6.16 S
Mean 525.6 1504,6 3,742

(15,11)_1 3 1014 3928 322* 2546.17s
(15,11)_2 4 1057 4607 460* 106.99s
(15,11)_3 5 1119 3878 296* 24.49 S
(15,11)_4 3 1121 4204 373* 953.77 S
(15,11) 5 2 1262 4233 550 (9,94%) 2h
Mean 1164,6 4286,4

(20,11)_1 3 2029 7996 674 (44,17%) 2h
(20,11)_2 4 2108 1107 7758 (29,71%) 2h
(20,11)_3 5 2035 7479 625 (27,02%) 2h
(20,11)_4 8 2010 7277 373* 2921,28s
(20,11)_5 7 2213 7921 554 (7,58%) 2h
Mean 2079 6356

In following, we give the notation used in the numerical results table:

• Number of variables: (Nbr-var), number of constraints: (Nbr-con)

• The total tardiness value
n∑
i=1

Ti, and the percentage gap between the

best integer solution found and the lower bound (for the values without
optimality)

• Running time (CPU) necessary for the resolution

Noted that, we limit the computational time on 2h.
Since the computational results is made on hard instances with up to

20 jobs and 11 machines, it shows that there is a correlation relation between
the size of the instance and the time of resolution, it is also remarkable
effects of the blocking and no-wait constraints on the value of the optimal
solutions.
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CONCLUSION

This work is the first that deals with the problem of scheduling prioritised
trains and nonprioritised trains in a railway network with total tardiness cri-
terion. In this study, we described our problem that corresponds to a job shop
scheduling problem with no-wait and blocking constraints. We proposed a
mathematical integer programming model on the basis of the one developed
by Lange and Werne (2018). In our case, we have adapted the Lange and
Werne’s model for the job shop scheduling with blocking constraints, by con-
sidering both the blocking and no-wait constraints. The performance of this
ILP has been evaluated through numerical experiments.

These experiments have shown that our ILP solves to optimally the
instances with small and average sizes. For further researches, we intend
to ameliorate the solutions obtained in this paper, especially for big size
instances, by investigating Meta-heuristic methods.

REFERENCES
Brizuela, C. A, Zhao, Y and Sannomiya, N. No-wait and blocking job-shops:

Challenging problems for Gas. International Conference on Systems, Man and
Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace, Tucson, AZ,
USA, 2349–2354 (2001).

Burdett, B. and Kozan, E. A disjunctive graph model and framework for constructing
new train schedulies. European Journal of Operational Research. V. 200(5) 85–98
(2010).

Cai, X. and Goh, C. A fast heuristic for the train scheduling problem. Computers
and Operations Research., V.21(5) 499–510 (1994).

Caprara, A., M. Monaci, P. Toth, P. L. Guida. GSingle-track train timetabling
with guaranteed optimality: branch and-bound algorithms with enhanced lower
bounds.Discrete Appl. Math. 154(5) 738–753 (2006).

Carey, M., I. Crawford. Scheduling trains on a network of busy complex stations.
Transportation Research Part B V. 41 159–178(2007).

Cordeau, J. F., Toth, P., and Vigo, D.A survey of optimization models on train routing
and scheduling. Transportation Science. V. 32(4) 380–404 (1998).

D’Ariano, A, Pacciarelli, D and Pranzo, M. A branch and bound algorithm
for scheduling trains in a railway network. European Journal of Operational
Research. V. 183(2) 643–657 (2007).

D’Ariano, A., Corman, F., Pacciarelli, D., and Pranzo, M. Reordering and local
rerouting Strategies to manage train traffic in real time. Transportation Science.
V. 42(4) 405–419 (2008).

Dorfman, M. and Medanic, J. J, Scheduling trains on a railway network using a
discrete event model of railway traffic. Transportation Research Part B., V. 38
81–98 (2004).

Gholami, O, Sotskov, YN andWerner, F. Fast edge-orientation heuristics for job-shop
scheduling problems with applications to train scheduling. International Journal
of Operational Research. V.2 19–32 (2013).

Ghoseiri, K., Szidarovszky, F., and Asgharpour,M. J. SA multiobjective train schedul-
ing model and solution. Transportation Research Part B: Methodological. V.
38(10) 927–952 (2004).



An Exact Solution Approach for Prioritised and Nonprioritised Trains Scheduling Problem 871

Kreuger, P, Carlsson, M, Olsson, J, Sjöland, T and Aström, E. Trip scheduling on
single track networks the tuff train scheduler. Workshop on industrial constraint
directed scheduling 1–12 (1997).

Lange, J andWerner, F. Railway Approaches to Modeling Train Scheduling Problems
as Job Shops with Blocking Constraints. Journal of Scheduling. V. 21(2) 191–207
(2018).

Liu, S. and Kozan, E. Scheduling trains with priorities: a no-wait blocking parallel-
machine job shop scheduling model. Transportation Science, V. 45(2), (2011)
175–198.

Louaqad, S, Kamach, O and Iguider, A. Scheduling for job shop problems with trans-
portation and blocking no-wait constraints. Journal of Theoretical and Applied
Information Technology, V. 96(10), (2018).

Lusby, R. M., Larsen, J., Ehrgott, M., and Ryan, D. track allocation: Models and
methods.OR Spectrum. V. 33(4) 843–883 (2011).

Manne, A. On the job shop scheduling problem Operations Research. V.1960(8)
219–22 (2005).

Mascis, A and Pacciarelli D. Job-shop scheduling with blocking and no-wait con-
straints. European Journal of Operational Research. V. 143 498–517 (2002).

Niu, H., and Zhou, X. Optimizing urban rail timetable under time dependent
demand and oversaturated conditions. Transportation Research Part C: Emerging
Technologies 36 212–230 (2013).

Niu, H., Zhou, X., and Gao, R. Train scheduling for minimizing passenger wait-
ing time with time-dependent demand and skipstop patterns: Nonlinear integer
programming models with linear constraints. Transportation Research Part B:
Methodological V. 76 117–135 (2015).

Oliveira, E and Smith B.M. A job-shop scheduling model for the single-track railway
scheduling problem. Research Report Series 21, School of Computing, University
of Leeds (2000).

Roy, B and Sussman, B. Les Probl‘em d’Ordonnancement avec Constraintes Disjonc-
tives.Note DS No.9 bis, SEMA, Paris (1964).

Szpigel, B. Optimal train scheduling on a single line railway. European Journal of
Operational Research. V. 72(3) 344–351 (1973).

Törnquist, J., and Persson, J. A. ON-tracked railway traffic rescheduling during
disturbances. Transportation Research Part B: Methodological V. 41(3) 342–362
(2007).

Van den Broek, J and Hurkens, C. A new heuristic for job shops with no-wait and
blocking constraints. ARRIVAL-TR, V. 0112, (2007).

Veelenturf, L. P., Kidd, M. P., Cacchiani, V., Kroon, L. G. and Toth, P. A railway
timetable rescheduling approach for handling large-scale disruptions. Transporta-
tion Science. V. 50(3) 841–862 (2015).

Zhou, X. and Zhong, M. Distinguishing cartesian powers of graphs. Transportation
Research Part B. V. 21 320–341 (2007).

Zhou, X., M. Zhong. Bicriteria train scheduling for high-speed passenger railway
planning applications. Eur. J. Oper. Res. V.167 752–771 (2004).


	An Exact Solution Approach for Prioritised and Nonprioritised Trains Scheduling Problem
	INTRODUCTION
	PROBLEM DESCRIPTION
	Disjunctive and Alternative Graph Model 

	MATHEMATICAL MODEL
	Parameters and Indices
	Decision Variable 
	Constraints 
	Objective Function 

	OVERVIEW OF SOME PERTINENT LITERATURE RESULTS
	COMPUTATIONAL EXPERIMENTS
	CONCLUSION


