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ABSTRACT

This study presents a novel approach for touch sensing using semi-elastic textile sur-
faces that does not require the placement of additional sensors in the sensing area,
instead relying on sensors located on the border of the textile. The proposed approach
is demonstrated through experiments involving an elastic Jersey fabric and a variety
of machine-learning models. The performance of one particular border-based sensor
design is evaluated in depth. By using visual markers, the best-performing visual sen-
sor arrangement predicts a single touch point with a mean squared error of 1.36 mm
on an area of 125mm by 125mm. We built a textile only prototype that is able to clas-
sify touch at three indent levels (0, 15, and 20 mm) with an accuracy of 82.85%. Our
results suggest that this approach has potential applications in wearable technology
and smart textiles, making it a promising avenue for further exploration in these fields.

Keywords: Textile sensor, Touch interaction, Machine learning, Smart textiles and applications,
Technical textiles

INTRODUCTION

The field of wearable technology and smart textiles has seen rapid growth and
development in recent years. A key trend in this field is the use of flexible and
tangible surfaces to facilitate user interactions. Traditionally, sensors such as
capacitive or resistive sensors are directly placed on the sensing area to detect
touch inputs (Mecnika et al. 2015). For instance, capacitive textile touch
sensors rely on a 2D matrix of wires to detect touch, which can disrupt the
texture, surface structure, and potentially alter the behaviour of the textile
(Aigner et al. 2021). Such alterations can compromise the functional qualities
of the textile, structural integrity, and aesthetics, limiting the scope of its
applications.

To address this issue, we propose a novel approach for touch sensing on
semi-elastic textile surfaces without the need to alter or place additional sen-
sors in the sensing area. Our approach involves placing sensors on the border
of the textile (cf. Figure 1(a)), leaving the interaction area completely unal-
tered and free of sensors. The sensors on the border detect stretching caused
by interactions in the sensing area, which is measured and used for clas-
sification using machine-learning algorithms. Our approach eliminates the
need for resistive or capacitive measurements on the textile surface within the
touch area, preserving its original texture and surface structure. Furthermore,
it allows for a wide range of applications in wearable technology and smart
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textiles, providing a seamless and unobtrusive way for user interaction. Our
research aims to explore the technical challenges involved in developing this
border-based approach and evaluate its performance, as well as investigate
potential applications and limitations.

Figure 1: Overview of our border-based sensor prototype: a jersey textile is stretched
over a frame and 12 stretch-sensitive patches (a single patch is highlighted in red) are
mounted on its border around the touch area (highlighted in yellow) (a). Interactions,
like finger presses, lead to a 3D deformation of the fabric as illustrated in (b). By mea-
suring tension at the borders of the fabric we can reconstruct touch points. Different
positions and different touch depths lead to varying strain on the border of the sensor,
indicated by the brightness of the patch (c)–(e).

RELATED WORK

In recent years, there has been significant progress in the development of
tactile sensing systems in multiple fields (Chi et al. 2018; Pyo et al. 2021).
For example, image sensors have been used to track visual markers within
soft synthetic tissue used for robotic grip detection. Together with techniques
such as Voronoi segmentation and artificial intelligence, they have been used
to improve tactile sensing (Cramphorn et al. 2018; Shimonomura 2019; Yuan
et al. 2017).

In the field of robotics and damage detection, electrical resistance tomog-
raphy (ERT) is used. ERT-based tactile sensors with distributed electrodes
can be used in robotic skin to conform to a curved surface (Lee et al. 2021;
Park et al. 2020).

Similar studies have explored the potential of electrical impedance tomog-
raphy (EIT) as a method for soft and stretchable sensor applications,
structural damage localisation in composite parts, low-cost and large-area
touch sensing using conductive fabric, and its application as a robotic
skin (Baltopoulos et al. 2013; Duan et al. 2019; Russo et al. 2017;
Silvera-Tawil et al. 2015). In fabric sensing, new algorithms are used to
improve the touch localisation accuracy of a knitted or embroidered capac-
itive and resistive touch sensing system, whereas textile mutual capacitive
sensors using resistive and capacitive yarn achieve continuous input of up
to three degrees of freedom (Aigner et al. 2021, 2022; Hamdan et al. 2018;
Parzer et al. 2018; Pointner et al. 2020, 2022; Vallett et al. 2020).
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Utilising the shapeable nature of fabrics, deformable displays together with
user defined gestures have been proposed and intelligent robotic manipu-
lation, sensing principles, typical designs, common issues, and applications
have been explored (Bacim et al. 2012; Mlakar et al. 2021; Tegin et al. 2005;
Troiano et al. 2014).

Overall, a wide range of sensing modalities and technologies can be
employed for tactile sensing. While border-based measurement has been
explored together with ERT and EIT, and the deformability or stretchabil-
ity of fabrics has been utilised previously, we believe we are among the
first to combine the two paradigms in a novel way. We combined border-
based sensing modalities on non-resistive and non-capacitive textiles together
with artificial intelligence techniques for accurate and comprehensive tactile
sensing systems.

RESULTS

To implement and validate the proposed border-based approach for touch
sensing on semi-elastic textile surfaces, we designed a comprehensive exper-
imental setup. First, to demonstrate the working principle of our sensor, we
used a vision-based approach and simulations. We painted a 7 by 7 grid of
highly reflective points on the surface of the textile to track its movement and
enable reliable and semi-automatic data collection and labelling. In further
prototypes, the density of points was increased, and a grid of 14 by 14 points
was used. Additionally, we utilised a customised CNC milling machine to
create indentations at touch points with predefined depths and random loca-
tions on the 80 by 80mm sensor area. The initial step in our study involved an
analysis of motion capture data gathered from the fabric, which we utilised
to construct a preliminary digital model. We observed that the movement of
the fabric closely resembled a linear surface in three dimensions, leading us to
develop a mathematical model that could simulate measurements. We com-
pare our simulated points (from our linear model) to tracked real-world data
points over four experiment runs with a total of 2000 frames and found that
the overall error across the entire surface is 1.7%, measured as Root Mean
Squared (RMS) error. The error between simulation andmeasurements varies
from 0,5% to 2% across the surface as displayed in Figure 2(a).

Single Indent Localisation

The recorded real-world data together with simulations were the bases for an
assessment of different border-based sensor arrangements for single-indent
localisation (as required for single-touch interactions). Therefore, we recon-
structed the location of indentations on the fabric by only measuring the
stretch between two surface points (i.e., the sensor). The optimal number
of sensors and their placement on the surface was the subject of subsequent
experiments.

To determine the most optimal sensor configuration, several manually
defined arrangements were tested, as illustrated in Figure 2(c). The resulting
stretch values for each sensor, for both the physical and mathematical mod-
els, were then used as input features for machine learning to reconstruct the
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indent location. To assess performance, elementary machine-learning mod-
els such as random forest, linear regression, and polynomial regression were
employed. The data was split randomly into training and test sets at a ratio
of 66.6 to 33.3. The graph in Figure 2(b) shows the performance of sev-
eral configurations with a random forest model for simulated and real-world
measurements in Mean Absolute Error (MAE).

Figure 2: Comparison of the mathematical model to real-world measurements: The
RMS of the mathematical surface model in comparison to the measured one across
the sensor area (a). Note that the white pixels indicate missing optical tracking informa-
tion. The Mean Absolute Error from the Random Forest sensor pattern evaluation, in
relation to the entire touch area, is presented in (b). Various sensor configurations are
evaluated, ranging from 3–36 sensors in 26 different arrangements (6 are shown) (c).

The experimental results allowed us to assess varying sensor configurations
andmachine-learningmodels for accurately reconstructing touch inputs from
border-based sensors. Note that the high MAE visible in the mathematical
model with four sensors, in Figure 2(b), is due to the utilised sensor arrange-
ment. Hereby the sensors are arranged in a cross in the centre of the area
where the average RMS-Distance for the mathematical model is the high-
est as can be seen in Figure 2(a). Due to the concentration of sensors in
one area, coinciding with the area of the greatest distance between visual
and mathematical data, the mathematical model performs worse in this sole
instance.

While arrangements with four or less sensors were found to be impre-
cise, regardless of their placement, the use of six or more sensors yielded
better results. A total of 26 different arrangements, ranging from 3 to 36
sensors, were tested and evaluated. In terms of practical production consid-
erations, using fewer sensors minimises the disruption to the fabric structure,
and therefore, we selected the best-performing 12-sensor configuration (mean
squared error of 1.36 mm) for our textile-sensor prototype.

Textile-Sensor Prototype

Based on the findings from the previous experiments (i.e., simulations and
optical measurements) we mounted 12 textile sensors on the border of
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our prototype (cf. Figure 1(a) and Figure 3(a)). The sensors are rectangu-
lar patches of conductive fabric that change resistance when stretched. The
change in resistance during experiments (random touch points on the sensor
area) was recorded and used as input into a machine-learning model. Several
models were evaluated and the best-working model for textile, mathematical
and visual implementation is a simple Multi-Layer-Perceptron.

Figure 3: Here the sensor arrangement in the sensor area is illustrated, along with
the touch area and three indentations (a). Additionally, the time plots for sensor data
from sensors 0, 5, and 6 at the duration of the indentations are displayed in (b). The
performance of the MLP in predicting the indent levels, as compared to the actual
indent levels of a test matrix, is presented in the form of a confusion matrix (c). The
raw sensor data stream as it is received from the sensors is depicted in (d). Note that
at the time of measurement 3 of the 12 sensors were defective and recorded noise
data. Thus, they were excluded from the experiments and graphs.

The training was performed with a set of 997 touch points and the model
was evaluated on 499 test points. The accuracy of touch classification at
three different indent levels (0, 15, and 20 mm) from any given touch event
using sensor data is 82.85%. In comparison, the simulated sensor achieves a
validation accuracy of 91.17% for classifying the indentation depth (0, 15,
or 20 mm).

METHOD

In developing our sensor prototype, we selected a knit jersey fabric as the
primary material that was stretched over a rectangular frame with a sens-
ing area of 125 by 125 mm. The textile sensors themselves were created
from rectangular pieces of EeonTex™ Conductive Stretchable Fabric which
were cut and sewn onto the jersey using highly conductive, polyamide silver
plated yarn fromMadeira. To facilitate repeated and precise touch events, an
industrial embroidery frame was utilised, which enabled the prototype to be
mounted onto a customised CNC milling machine with a stylus-based touch
point attachment for testing purposes. All sensors share a common ground
and are individually connected to a measurement unit. To extract measure-
ment data, the hardware platform prototyping kit CY8CPROTO-063-BLE
from Infineon is used, with the data subsequently being recorded in a CSV
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file for further analysis. This setup allowed us tomeasure and validate the per-
formance of our proposed approach for touch sensing on semi-elastic textile
surfaces.

For tracking the surface, a set of six motion capture cameras were used
to capture the textile behaviour in three dimensions, allowing us to mea-
sure the stretching of the sensor’s border caused by touch inputs in the
sensing area at a rate of 100 frames per second. We used Flex-3 cameras
from Optitrack and analysed the tracking data with Optitrack’s Motive
software in version 2.2. To enable the accurate representation of the fab-
ric’s movement during indentation and its behaviour in response to touch,
we transformed the 3D coordinates into a scaled coordinate system, result-
ing in the rotated, scaled, and translated points being represented within a
zero-to-one range on each axis. The position of reflective points compared
to the resting state, enables the calculation of surface parameters and the
amount of stretch between measured coordinates. Additionally, the CNC
milling machine’s head was also tracked optically for precise measurements
in the same coordinate system as the surface.

The stretching properties of both the physical fabric and a corresponding
mathematical surface model were measured at various locations, including
at potential sensor locations. An artificial sensor was placed between two
selected points on a grid, and the degree of stretch was recorded. To deter-
mine the most optimal sensor configuration, several different arrangements
were tested, as illustrated in Figure 2(c). The resulting stretch values for each
sensor, for both the physical and mathematical models, were then used as fea-
tures in a machine-learning approach. To assess the performance, elementary
machine-learning models such as random forest, linear regression, and poly-
nomial regression were employed. Alongside, different standard models from
TensorFlow (Martín Abadi et al. 2015), Skicit-learn (Pedregosa et al. 2011)
and PyTorch (Paszke et al. 2019) were tested. Ultimately a TensorFlow Keras
Sequential model was chosen. The MLP model used in the code has two
hidden layers, each with 64 neurons and ReLU activation function, and an
output layer with 4 neurons and SoftMax activation function, resulting in a
total of 196 neurons.

CONCLUSION

We propose a border-based approach for touch sensing on semi-elastic tex-
tile surfaces. By placing sensors on the border of the textile, we leave the
interaction area completely unaltered and free of sensors. The sensors on the
border detect stretching caused by interactions in the sensing area, which is
then measured and classified using machine-learning algorithms.

In our experiments, we show that a simple linear surface model is precise
enough for designing optimal sensor configurations and verify this exper-
imentally with simulations and optical tracking. For our experiments, we
utilised an elastic Jersey fabric stretched over a rectangular frame with a
sensing area of 125 by 125 mm. For this setup, we found an optimal sensor
arrangement with 12 border-based sensors, that is capable of reconstruct-
ing touch points with an error of 1.36 mm and classifying three indentation
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levels with an accuracy of 91.17% on the simulated mathematical data and
82.85% on the sensor data.

Furthermore, we built the first border-based-sensing and textile-only pro-
totype that is able to classify the indent of touch points. The lower clas-
sification accuracy of our prototype can be attributed to the presence of
noise and errors that may have resulted from hand-cutting the sensor patches.
Additionally, our physical prototype uses resistance measurements as input
to the machine-learning model, while our simulation and tracking experi-
ments employ distance measurements directly. Therefore, the resistance data
might introduce an additional level of complexity when compared to our
preliminary analysis.

In the future, we want to investigate if the machine-learning models can
be further optimised and how our prototype will perform in real-world
applications with more complex touch inputs and varying environments.

Based on the findings of our study, additional attention will be devoted to
the detection of the point of interaction, rather than solely relying on the
indent level. Further exploration is necessary to determine whether alter-
native sensor arrangements or configurations may be advantageous in this
regard.

Nevertheless, the results of our experiments demonstrate that the proposed
approach is effective and might be applied in various wearable technology
and smart textile applications in the future. Our approach allows a seamless
and unobtrusive way for users to interact with textile surfaces.
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