Human Systems Engineering and Design (IHSED2023), Vol. 112, 2023, 426-435 AH FE
https://doi.org/10.54941/ahfe1004155 |nternational

How to Select and Implement a Suitable
Low-Code Development Platform

Sven Hinrichsen, Alexander Nikolenko, Kai Leon Becker,
and Benjamin Adrian

Industrial Engineering Lab, Ostwestfalen-Lippe University of Applied Sciences and
Arts, Lemgo, Germany

ABSTRACT

Low-code programming allows the creation of software applications using a graphi-
cal user interface with minimal classical programming code (“low code”) and without
requiring extensive programming knowledge. This puts it in contrast to previous gen-
erations of programming languages. The advantages of low-code development are
manifold, including the increase of software development capacities through a par-
tial decentralization of the development process, speeding up software development
through the low-code approach, and designing software with a strong user-centric
focus. Using a low-code development platform can help companies adapt their own
business processes to changing requirements more quickly and to make complex-
ity resulting, for example, from heterogeneous customer wishes, manageable. Since
many low-code development platforms are available, it is not easy for companies to
select and successfully introduce a platform that meets their requirements. For this
reason, this article presents a procedure model that assists in the process of selecting
and implementing a platform.

Keywords: Complexity management, Low-code development platform, Process model for
selection and implementation

INTRODUCTION

As markets and customer needs continue to evolve, the emergence of new
technologies or changed organizational principles leads time and time again
to paradigm shifts in production system design. Especially the trend towards
configuration and individualization of products by customers, as well as the
integration of ever more functions into products — for example in the sec-
tor of mechanical engineering (Brecher et al., 2011) — in conjunction with
shorter product life cycles have led to a significant increase in complexity
(e.g., Theuer and Lass, 2016; Schuh et al., 2017). This, in turn, led to a
significant increase in the amount of information companies need to pro-
cess. Every customer order in multi-variant batch production, and even more
so in industrial individual production (customization), comes with partic-
ular requirements. These affect the entire product development and order
fulfillment process. Therefore, new approaches are needed to deal with this
complexity (Hinrichsen and Bornewasser, 2020). The goal, on the one hand,
is to keep complexity costs low (Hvam et al., 2020), on the other, to offer

© 2023. Published by AHFE Open Access. All rights reserved. 426


https://doi.org/10.54941/ahfe1004155

How to Select and Implement a Suitable Low-Code Development Platform 427

customers a sophisticated range of products and services (Ponn and Linde-
mann, 2011). For many decades, the focus has been on strategies of avoidance
and reduction of complexity (see Figure 1). On the one hand, these were
applied to the range of products and services offered on the market, and on
the other, to operating processes (Hvam et al., 2020). However, in variant-
rich batch production and especially in individual industrial production,
strict limitations are placed on these strategies of complexity avoidance and
reduction, as customers often expect that even particular requirements for
products and services are taken into account. Therefore, a strategic reori-
entation should accompany industrially oriented individual production. The
goal is to better focus on strategies for mastering complexity. Complexity is
seen as inherent to the system (Brinzer and Banerjee, 2017; Hinrichsen and
Bornewasser, 2020). Complexity can be mastered through different strategic
approaches. These concern personnel, organization and technology, as well
as the compatibility between all system elements (see Figure 1). The intended
result of this approach of mastering complexity is to improve a company’s
agility and thus enable it to cope with ever-changing requirements.

Avoiding
e S complexity
il B customers i
.

- . s
/’ emerging /»
n markets - flexibility . :
1/ /,’ K — number\\\\ < Personnel: Raising the
/ ew K p— S gf : ‘\\ staff’s level of competence
s ‘ / additional ©f variants o

% Organization: Autonomy,
self-organization and

m operational complexity . _‘::cc::;;ijaat‘tjm i
< gy: Use of infor-

i

L requirements

competitors '

i "
¢ functions

mation and communication

1 ; i
v skilled labor i on-time y, short life s
i 1 technologies
\ shortage v delivery s, cycles product F " e
W b 33 feRih P < Compatibility between
9 . . mod\f»catlons‘/ : 45, y
N . - personnel, organization an
k IS ocesses |
. short technology ~. processes gy technolo
4 ~_of order status gy
~. life cycles o
.

e ) g -7 Reducing
technologies TEEEE -7 complexity

Figure 1: Strategies for managing complexity.

The personnel approach to mastering complexity is concerned with the
employees’ competencies. Its goal is to enable them to cope with varying and
changing requirements and to refine their own work processes. The second,
organizational approach to managing complexity originates from systems
theory (Kirchhof, 2003). It follows from this theory that highly complex
work-sharing systems usually cannot centrally process the large amounts of
information which are externally and internally generated from the most var-
ied and changing external requirements. Central organizational units would
often lack the flexibility and knowledge to deal with the varying demands
of different stakeholders. Therefore, autonomy, self-organization and decen-
tralization would represent an important approach to mastering complexity



428 Hinrichsen et al.

(Kirchhof, 2003). A third approach to mastering complexity involves using
information and communication technologies. In the context of the Industry
4.0 concept, these are seen as a guarantee for effectively and efficiently pro-
cessing the large, dynamically developing volumes of information associated
with individual or multi-variant batch production, while at the same time
keeping unit costs low. The fourth approach to mastering complexity is to
accommodate for the compatibility principle. This principle describes the fit
between the elements of a socio-technical system and represents the prerequi-
site for a successful interaction of all elements while working towards a goal
(Blasing et al., 2021).

LOW-CODE SOFTWARE DEVELOPMENT AS AN APPROACH TO
MASTERING COMPLEXITY

Low-code programming allows the creation of software applications using
a graphical user interface with minimal classical programming code (“low
code”) and without requiring extensive programming knowledge. The code
is generated automatically in the background or is respectively stored in
the selected individual function modules (Kahanwal, 2013; Waszkowski,
2019). Programming is done via a low-code development platform (LCDP),
which constitutes the development environment and is usually cloud-based
(Sanchis et al., 2020; Sahay et al., 2020). The development of application
software via an LCDP - sometimes also referred to as end-user devel-
opment — can decisively contribute to making complexity in companies
manageable.

Low-code development implicitly incorporates the four principles for mas-
tering complexity described above (see Figure 1). The use of LCDP makes it
possible to at least partially decentralize software development (organiza-
tional approach to mastering complexity). Such decentralization has several
advantages. For example, it usually takes companies a very long time to
develop application software centrally and code-based. This is due to a short-
age of IT specialists with longtime experience on the labor market, which
often creates bottlenecks in IT departments. In addition, there are often inter-
face and communication problems between the future software users and the
programmers from the central IT department. Decentralizing development
and thus shifting tasks to specialist departments can therefore help to increase
in-house programming capacities and reduce existing communication prob-
lems. As a result, the time needed for software development projects can be
shortened. By decentralizing software development through low-code, it is
also possible to rapidly adjust existing software to changing customer and
user requirements.

In order to at least partially decentralize software development by means
of an LCDP, IT-savvy employees from specialist departments must be enabled
to program applications using such a platform (personnel approach to mas-
tering complexity). This requires a modular training concept to establish
qualification standards for low-code programming. To ensure a high quality
of software development, a company-specific guideline should be created to
outline all software development standards that apply to the selected LCDP.



How to Select and Implement a Suitable Low-Code Development Platform 429

For example, these standards may include guidelines for designing graphical
user interfaces and conducting software tests.

In addition to decentralization and empowerment, a third approach to
mastering complexity is to use information and communication technologies
to process, store and transmit large, dynamically changing amounts of data.
LCDPs address this growing demand for company-specific software appli-
cations for processing information and digitizing processes. Furthermore,
they support the trend towards the use of apps on mobile devices by creat-
ing essential prerequisites for programming “enterprise apps” (Groger et al.,
2013).

In accordance with the compatibility principle, an LCDP that is compat-
ible with both the requirements of the employees and the company (fourth
approach to mastering complexity) is to be selected. For this, the complexity-
compatibility paradigm (Karwowski, 2005) must be taken into account,
which states that complete compatibility can never be achieved, and that
incompatibilities can only ever be minimized. In view of this principle, Leth-
bridge (2021) finds fault with the fact that, despite the term “low code”,
some LCDPs actually require the generation of large amounts of code for
software development, and that the maintenance of this code can be more
difficult than with classical programming languages, as LCDPs do not ade-
quately support best practices such as versioning, work-sharing development,
reuse of program modules or automated testing. Therefore, it is vitally impor-
tant for companies to select an LCDP that meets their requirements in order
to minimize incompatibilities.

PROBLEM STATEMENT, OBJECTIVE AND METHODS

According to market researchers, there are now more than 200 different
LCDPs available. These differ in terms of their functional orientation, appli-
cation focus, and underlying technology (Al Alamin et al., 2021). Given
the very wide and confusing range of LCDPs on the market, it is challeng-
ing, especially for SMEs, to select and successfully implement a platform
that meets their requirements to a high degree. Currently, there is no
method available that assists in the operational selection and implemen-
tation process of such a platform. The choice of an LCDP is a strategic
decision, as it has a long-term character and can only be reversed with
great effort. Once a company has programmed and implemented numer-
ous applications, the hurdle for changing the platform provider is quite
high.

This paper aims to present a procedure model for selecting and introducing
an LCDP. This model supports companies in finding a platform that meets
their requirements and in implementing it successfully in the company. The
model consists of six phases, to each of which are assigned recommendations
for actions and tools. The procedure model is based on the phases of the
REFA standard program on work system design (REFA, 2015). The model
was developed and tested within the context of two company projects focused
on selecting and implementing of an LCDP.



430 Hinrichsen et al.

RESULTS

The process model for selecting and introducing an LCDP consists of six
phases (see Figure 2). The individual phases are in turn subdivided into steps.
Since the task of selecting and introducing an LCDP is of strategic significance
for many companies and also concomitant with a high degree of complexity,
that task is organized as a project. In the first phase, therefore, the initial
situation is analyzed and the project framework is defined. This framework
includes a brief description of the initial situation (step 1.1), a definition of
the project goals (step 1.2), a delimitation of the project contents (step 1.3),
appointments to the project team (step 1.4), a plan for resource allocation
(step 1.5) and a milestone plan (step 1.6). As a result of the first phase of the
process model, all participants have a mutual understanding of the project’s
contents and framework.

Phase 1
Analyzing the initial situation and

clarifying the project’s scope
¥ing Pl 3 Phase 2

Describing use cases and

determining requirements
Phase 3

Pre-selecting of

low-code development platforms
P P Phase 4

Final selecting of low-code

development platform
Phase 5

Implementing the

low-code development platform
Phase 6

Using the low-code development
platform and evaluating the project

Figure 2: Process model for selecting and introducing a low-code development
platform.

The second phase of the procedure model consists of three steps. In
step 2.1, interviews or workshops are conducted in particular departments of
the company to identify potential use cases. Criteria for possible use cases are,
for example, business processes that the interviewees consider to be adminis-
tratively time-consuming (e.g., forwarding documents by e-mail as part of an
approval process), wasteful (e.g., waiting times, duplication of work, errors)
or involve media discontinuities (e.g., copying data from the ERP system
to a spreadsheet program daily). The identified use cases are systematically
described in step 2.2. To that end, the processes which are to be optimized are
documented on a macro level. From the outlined use cases, requirements for
selecting the LCDP are defined in step 2.3. These requirements are discussed,
complemented and finalized in a workshop.



How to Select and Implement a Suitable Low-Code Development Platform 431

The aim of the third phase of the procedure model is to filter out a few
platforms from the large number of LCDPs offered on the market. These
few platforms should, in principle, be able to meet the requirements of the
company. In this third phase of the procedure model, again three steps are
taken. In step 3.1, it is determined which of the many platforms offered on
the market should be considered in the analysis process, since it is impracti-
cable for almost every company to concern itself with the characteristics of
more than 200 platforms. Bratincevic and Rymer (2020) recommend using
a platform offered by a market-leading provider. They justify this advice by
stating that market-leading providers usually have many years of experience.
An extensive customer portfolio also indicates the reliability of a provider
and the attractiveness of its offer (Bratincevic and Rymer, 2020). Accord-
ingly, the degree of market penetration of an LCDP can be used as the first
selection criterion. Market analyses with estimates of the market share of
individual platform companies are provided by the market research compa-
nies Forrester Research (Koplowitz and Rymer, 2019) and Gartner. Forrester
Research and Gartner list over 50 vendors when their analyses are combined.
This list of providers can be supplemented with platform providers that are
not listed by the market research companies but are considered established
in the respective national market. A further selection is to be made in step
3.2. With regard to the providers listed by Forrester Research and Gartner,
it is recommended only to consider those that are classified as “Leaders” or
“Strong Performers” by Forrester Research or as “Leaders” or “Challengers”
by Gartner. In addition, further selection criteria for the pre-selection are to
be formulated, considering the requirements determined in phase 2 of the
model. Step 3.3 involves pre-selecting platforms through methods such as
utility analysis, resulting in a shortlist of three to eight platforms.

The fourth phase of the process model aims to make a final selection of
a platform based on the preselected platforms. In step 4.1, the criteria for a
final selection are defined. Step 4.2 involves obtaining offers and testing the
shortlisted platforms. Based on the assessments made and the offers received,
a platform is conclusively selected in step 4.3. The criteria which have been
used in the operational projects are listed below.

« Open source: Is the source code of the platform openly accessible?

« Application types: What application types of software (mobile, browser,
desktop) can be developed?

« Programming language for extensions: Which programming language can
be used to extend the LCDP if required?

. Version management: Does the LCDP have its own version management?

. Templates: Does the platform offer the use of ready-made dashboards,
diagrams and forms?

. Collaboration options: Can multiple developers work on the same appli-
cation simultaneously?

« Integration possibilities: Which protocols/ interfaces are supported by the
platform?

. Modifiability of the source code: Is it possible to edit the source code?



432 Hinrichsen et al.

« Modelling language: Can standardized modelling languages, such as UML
or BPMN, be used?

. Deployment options: What deployment options does the platform offer
(e.g., on-premises, Saa$, or cloud ERP)?

. Deployment on local infrastructures: Is it possible to deploy the platform
software on local infrastructure?

« Location of the cloud servers: In which country are the cloud servers
located?

. Location of the company: In which country is the provider located?

. Customer support: How and under what terms is support provided?

. Training courses: What training options are offered? At which terms are
training courses offered?

. Experience: Does the company already have experience with the platform
provider? Is another software product already being used by the provider?

In the literature, a tabular representation is often used for a detailed com-
parison of platforms. This can be seen in the works of several authors who
compare characteristics of LCDPs and present the availability of features in
tabular form (Born, 2019; Thirwe et al., 2020; Farshidi and Jansen, 2021;
Sahay et al., 2020). Such tables can assist in the selection process.

The fifth phase of the model comprises the introduction of the selected
LCDP in the company. Throughout the entire introduction process, it is
essential to ensure that the platform is well accepted by the employees, by
especially emphasizing its benefits. The phase is divided into three steps. In
step 5.1, an organizational and qualification concept is developed. The pur-
pose of the organizational concept is to define roles and assign employees to
these roles. The following roles are generally to be distinguished: Adminis-
trators, experienced developers, citizen developers, and users. Administrators
are responsible for the configuration of the platform. They can grant all
access rights and create, delete and edit user accounts. The creation of soft-
ware development guidelines may also be their responsibility. Furthermore,
they are in close contact with the provider’s third-level support and are
responsible for the maintenance of the software. The programs are primarily
created by the citizen developers. These work in specialist departments. Par-
ticularly suitable are employees who possess the necessary knowledge of their
department’s processes and are motivated by their affinity for technology to
program applications using the platform. Experienced programmers from
the IT department are responsible, for example, for developing connectors or
supporting citizen developers with complex tasks. Users have read-only rights
and can operate the created applications, but not change them. Depending on
the assigned roles, different qualification levels should be offered. In addition,
qualification should start at the highest role level, i.e., with administrators
and experienced developers. In step 5.2, the organizational and qualification
concept is implemented. Pilot projects will be initiated to develop first appli-
cation programs using the platform. Based on the experience gained with
these pilot projects, the concept will be implemented in the entire company
in step 5.3.



How to Select and Implement a Suitable Low-Code Development Platform 433

The subject of the sixth phase of the process model is to establish the plat-
form in the company. The further development of the organizational and
qualification concept is also a part of this phase. In step 6.1, the existing
continuous improvement process is used to ensure that new use cases for low-
code programming keep on being identified. In step 6.2, the organizational
and qualification concept is to be evaluated and further developed. For exam-
ple, attended training courses are to be evaluated by the participants. Finally,
the object of step 6.3 is to ensure the sustainable success of low-code pro-
gramming by monitoring even after the end of the project. For this purpose,
goals and key metrics can be introduced (e.g., number of low-code apps devel-
oped over time; assessment of user satisfaction with individual low-code apps
via a standardized questionnaire; estimated cost savings through the intro-
duction of individual low-code apps; number of active citizen developers in
the company).

CONCLUSION

Especially the trend towards configuration and individualization of prod-
ucts by customers as well as the integration of more and more functions into
products, combined with shorter product life cycles, have led to a consider-
able increase in complexity. This, in turn, led to a significant increase in the
amount of information companies need to process. The success of complexity
avoidance and reduction strategies is often limited against the backdrop of
heterogeneous customer requirements. Therefore, companies must be able to
master high complexity. Low-code development is an approach that can help
companies cope with this complexity, meaning large amounts of information
needing to be processed. Many business processes can be optimized in a short
time by developing suitable low-code applications. Ultimately, information
can be efficiently gathered, processed, stored and distributed via such soft-
ware applications. The advantage of low-code programming lies primarily
in its effect on software development, which can be partially decentralized
via this approach, so that additional personnel capacities are available for
agile and user-centered software development. However, since there is a large
number of LCDPs on the market, it is not easy to choose a platform that
meets the requirements. The process model presented and tested can help
companies select and successfully implement a suitable platform.

ACKNOWLEDGMENT

This publication is a result of the Pro-LowCode project, funded by the Min-
istry of Economic Affairs, Industry, Climate Action and Energy of the State
of North Rhine-Westphalia, Germany (grant no. 005-2011-0021).

REFERENCES

Al Alamin, A., Malakar, S., Uddin, G., Afroz, S., Haider, T., & Igbal, A. (2021). An
Empirical Study of Developer Discussions on Low-Code Software Development
Chal-lenges. In 2021 IEEE/ACM 18th International Conference on Mining Soft-
ware Repositories (MSR), Madrid, Spain, pp. 46-57. https://doi.org/10.1109/MS
R52588.2021.00018


https://doi.org/10.1109/MSR52588.2021.00018
https://doi.org/10.1109/MSR52588.2021.00018

434 Hinrichsen et al.

Blasing, D., Bornewasser, M., & Hinrichsen, S. (2021). Cognitive compatibility
in modern manual mixed-model assembly systems. Z. Arb. Wiss., pp. 289-302
https://doi.org/10.1007/s41449-021-00296-1

Born, A. (2019). Nieder mit dem Code. iX Magazin, 8(2019), S. 82-87.

Bratincevic, J., & Rymer, J. R. (2020). When And How To Modern-
ize Core Applications Using Low-Code Platforms. Forrester Research.
https://www.forrester.com/report/When- And-How-To-Modernize-Core-Appl
ications-Using-LowCode-Platforms/RES155943

Brecher, C., Kolster, D., & Herfs, W. (2011). Innovative Benutzerschnittstellen fur
die Bedienpanels von Werkzeugmaschinen. ZWF Zeitschrift fur wirtschaftlichen
Fabrikbetrieb, 106(7-8), 553-556. https://doi.org/10.3139/104.110607

Brinzer, B., & Banerjee, A. (2017). Komplexititsbewertung im Kontext Cyber-
physischer Systeme. ZWF Zeitschrift fiir wirtschaftlichen Fabrikbetrieb, 112(35),
341-345. https://doi.org/10.3139/104.111709

Farshidi, S., Jansen, S., & Fortuin, S. (2021). Model-driven development platform
selection: four industry case studies. Software and Systems Modeling, 20(5),
1525-1551. https://doi.org/10.1007/s10270-020-00855-w

Groger, C., Silcher, S., Westkdamper, E., & Mitschang, B. (2013). Leveraging Apps
in Manufacturing. A Framework for App Technology in the Enterprise. Procedia
CIRP, 7, 664—669. https://doi.org/10.1016/j.procir.2013.06.050

Hinrichsen, S., & Bornewasser, M. (2020). Veranderung der Gestaltungsparadigmen
industrieller Montagearbeit. In M. Bornewasser & S. Hinrichsen (eds), Informa-
torische Assistenzsysteme in der variantenreichen Montage. Springer Vieweg, S.
1-20. https://doi.org/10.1007/978-3-662-61374-0_1

Hvam, L., Hansen, C. L., Forza, C., Mortensen, N. H., & Haug, A. (2020).
The reduction of product and process complexity based on the quantification of
product complexity costs. International Journal of Production Research, 58(2),
350-366. https://doi.org/10.1080/00207543.2019.1587188

TIhirwe, F., di Ruscio, D., Mazzini, S., Pierini, P., & Pierantonio, A. (2020). Low-
code engineering for internet of things. Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings. https://doi.org/10.1145/3417990.3420208

Kahanwal, B. (2013). Abstraction Level Taxonomy of Programming Language
Frame-works. International Journal of Program Languages and Applications,
3(4), 1-12. https://doi.org/10.48550/arXiv.1311.3293

Karwowski, W. (2005). Ergonomics and human factors: the paradigms for science,
engineering, design, technology and management of human-compatible systems.
Ergonomics, 48(5), 436-463. https://doi.org/10.1080/00140130400029167

Kirchhof, R. (2003). Ganzheitliches Komplexititsmanagement — Grundlagen und
Methodik des Umgangs mit Komplexitit im Unternehmen. Springer Fachmedien.
https://doi.org/10.1007/978-3-663-10129-1_4

Koplowitz, R., & Rymer, J. R. (2019). The Forrester WaveTM: Low-Code
Development Platforms For AD&D Professionals. Forrester Research.
https://www.forrester.com/report/The-Forrester-Wave-LowCode-Developm
ent-Platforms-For-ADD-Professionals-Q1-2019/RES144387

Lethbridge, T. C. (2021). Low-Code Is Often High-Code, So We Must Design Low-
Code Platforms to Enable Proper Software Engineering. In T. Margaria & B.
Steffen (eds), Leveraging Applications of Formal Methods, Verification and Val-
idation. ISoLA 2021. Lecture Notes in Computer Science, vol. 13036. Springer,
Cham. https://doi.org/10.1007/978-3-030-89159-6_14


https://doi.org/10.1007/s41449-021-00296-1
https://www.forrester.com/report/When-And-How-To-Modernize-Core-Applications-Using-LowCode-Platforms/RES155943
https://www.forrester.com/report/When-And-How-To-Modernize-Core-Applications-Using-LowCode-Platforms/RES155943
https://doi.org/10.3139/104.110607
https://doi.org/10.3139/104.111709
https://doi.org/10.1007/s10270-020-00855-w
https://doi.org/10.1016/j.procir.2013.06.050
https://doi.org/10.1007/978-3-662-61374-0_1
https://doi.org/10.1080/00207543.2019.1587188
https://doi.org/10.1145/3417990.3420208
https://doi.org/10.48550/arXiv.1311.3293
https://doi.org/10.1080/00140130400029167
https://doi.org/10.1007/978-3-663-10129-1_4
https://www.forrester.com/report/The-Forrester-Wave-LowCode-Development-Platforms-For-ADD-Professionals-Q1-2019/RES144387
https://www.forrester.com/report/The-Forrester-Wave-LowCode-Development-Platforms-For-ADD-Professionals-Q1-2019/RES144387
https://doi.org/10.1007/978-3-030-89159-6_14

How to Select and Implement a Suitable Low-Code Development Platform 435

Ponn, J., & Lindemann, U. (2011). Konzeptentwicklung und Gestaltung technischer
Produkte — Systematisch von Anforderungen zu Konzepten und Gestaltlosungen.
2. Aufl. Berlin, Heidelberg: Springer.
REFA-Bundesverband e. V. (2015). Industrial Engineering: Standardmethoden zur
Produktivitatssteigerung und Prozessoptimierung. 2. Aufl. Minchen: Hanser.
Sanchis, R., Garcia-Perales, O., Fraile, F., & Poler, R. (2020). Low-Code as Enabler
of Digital Transformation in Manufacturing Industry. Applied Sciences. 10(12).
https://doi.org/10.3390/app10010012

Sahay, A., Indamutsa, A., Di Ruscio, D., & Pierantonio, A. (2020). Supporting
the understanding and comparison of low-code development platforms. In IEEE
46th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), pp. 171-178. https://doi.org/10.1109/SEAAS51224.2020.00036

Schuh, G., Rudolf, S., Riesener, M., Délle, C., & Schloesser, S. (2017). Product pro-
duction complexity research: Developments and opportunities. Procedia CIRP, 60,
344-349. https://doi.org/10.1016/j.procir.2017.01.006

Theuer, H., & Lass, S. (2016). Mastering complexity with autonomous produc-
tion processes. Procedia CIRP, 52, 41-45. https://doi.org/10.1016/j.procir.2016.
07.058

Waszkowski, R. (2019). Low-code platform for automating business processes in
manufacturing. IFAC PapersOnLine, 52(10), 376-381. https://doi.org/10.1016/j.
ifacol.2019.10.060


https://doi.org/10.3390/app10010012
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1016/j.procir.2017.01.006
https://doi.org/10.1016/j.procir.2016.07.058
https://doi.org/10.1016/j.procir.2016.07.058
https://doi.org/10.1016/j.ifacol.2019.10.060
https://doi.org/10.1016/j.ifacol.2019.10.060

	How to Select and Implement a Suitable Low-Code Development Platform
	INTRODUCTION
	LOW-CODE SOFTWARE DEVELOPMENT AS AN APPROACH TO MASTERING COMPLEXITY
	PROBLEM STATEMENT, OBJECTIVE AND METHODS
	RESULTS
	CONCLUSION
	ACKNOWLEDGMENT


