
Human Systems Engineering and Design (IHSED2023), Vol. 112, 2023, 436–445

https://doi.org/10.54941/ahfe1004156

Modeling Low-Code Databases With
Executable UML
Alan Bubalo and Nikola Tanković

Faculty of Informatics, Juraj Dobrila University of Pula, Zagrebačka ulica 30, 52100
Pula, Croatia

ABSTRACT

This study aims to create a method for transforming a Unified Modeling Language
(UML) class model into an open-source end-user database. The manual transforma-
tion of UML class models into a database can be time-consuming and prone to errors.
By making a database schema from a UML class model in standard XMI format, our
framework offers an automated alternative and makes the transformation more useful.
The tool gets the tables, attributes, and connections that compose the schema from
the class model’s classes, properties, and relationships. The tool also has an abstract
RESTful web service component to give the newly made database a web interface.
Such a tool will make it easier for software engineers with less experience, especially
students, to learn and use UML class models. We implemented the framework for a
Baserow end-user database and evaluated it on a student internship use case. The
accompanying code is available as an open-source GitHub repository.

Keywords: UML class diagram, Model-driven development, Low-code database, Baserow,
REST API

INTRODUCTION

Background and Motivation

Due to the rapid development of technology, databases are now a necessary
part of most software programs. These databases can be time-consuming,
difficult to maintain, and prone to mistakes, especially when design mod-
els are converted into a database schema. As a result, there is an increasing
demand for straightforward and practical solutions to speed up this process.
Businesses seek solutions to meet their software needs quickly, cheaply, and
securely. Low-code development platforms (LCDPs) have come to light in this
context as promising strategy to assist businesses in achieving these objectives
(Talesra and Nagaraja, 2021). It is why low-code databases, which reduce
human coding and streamline development, are gaining popularity.

Software engineers use the widely recognized modeling language, UML, to
visualize and express the design of a software system. UML class models typ-
ically represent database schemas, making the conversion between the two a
crucial stage in development. The Unified Modeling Language class diagram
(UML) has evolved into an industry standard for modeling time-varying data

© 2023. Published by AHFE Open Access. All rights reserved. 436

https://doi.org/10.54941/ahfe1004156


Modeling Low-Code Databases With Executable UML 437

from the real world into objects (Soumiya and Mohamed, 2017), emphasiz-
ing the importance of converting UML class models into database schemas.
However, manually translating UML class models into a database design can
be time-consuming and error-prone, highlighting the need for efficient and
reliable conversion methods.

This project attempts to develop a technique for converting a UML class
model into an open-source end-user database in response to these difficulties.
Our system decreases the time and errors involved with manual conversion
by automating the translation process and providing a RESTful web service
component. For students and less experienced software developers, such a
tool offers great promise for speeding up the study of and use of UML class
models.

Objectives

The primary objectives of this research are:

• Create a framework that automatically converts UML class models into
an open-source end-user database schema.

• To implement an abstract RESTful web service component that offers a
web interface for the freshly made database.

• Evaluate the framework’s performance, usefulness, and application in a
student internship case study.

Scope and Limitations

The main objectives of this study are constructing and assessing a framework
for converting UML class models into an open-source end-user database,
explicitly using the Baserow end-user database. The study needs to cover
various modeling languages and various varieties of UML diagrams.

Although the suggested framework provides an automatic substitute for
manual conversion, there might still be restrictions on how it can be used in
more complicated or specialized situations. Additionally, the rating is based
on a use case from a student internship, which may not fully represent all
scenarios that occur in real-world software development environments. The
study, however, lays the groundwork for future research and advancements in
model-driven engineering, which aims to boost overall quality and automate
various software development processes to maximize efficiency, as well as in
low-code databases (Hutchinson et al., 2014).

LITERATURE REVIEW

In a study published in 2014, Li et al. (2014) looked at the conversion of UML
class diagrams, a component of the Platform-Independent Model (PIM), into
HBase. This NoSQL database is a part of the Platform-Specific Model (PSM).
Their research compared themeta-models of UML class diagrams andHBase,
mapped their respective feature sets, and developed mapping criteria. Several
restrictions were placed on the research, such as potential model development
flaws. Another restriction was the absence of debugging capabilities. Further-
more, the study should have examined the performance of more sophisticated
models.



438 Bubalo and Tanković

Byrne and Shahzad Qureshi (2013) explain the differences between using
ER models and UML class diagrams. They conclude that while UML works
well for abstract modeling, the IDEF1X approach is preferable for database
design. ER models perform better than UML class diagrams during the
requirements analysis process. As Byrne and Shahzad Qureshi indicate,
UML class diagrams are more of a tool for developers than for database
administrators. Additionally, they contend that because UML class dia-
grams are feature-rich, they are inappropriate for conceptual modeling.
They did not investigate the differences between many-to-many relation-
ships, ternary relationships, and aggregation in ER models and UML class
diagrams.

In order to include the learning capabilities of UML class diagrams in
ACME, Soler et al. (2010) analyze the distinctions between ER modeling and
UML class diagrams. At the authors’ university, an ACME web environment
supports learning across various courses. Students can practice class diagram
material using a web-based tool by modeling a class diagram following the
specifications of the tasks in the exercises. The tool also evaluates the solution
by associating parameters or attributes from the UML class diagram with the
student’s chosen solution. In an experiment, they demonstrated that students
who utilized the program outperformed students who completed the assign-
ments manually. A more significant evaluation involving more pupils needs
to support the conclusions.

Similar to Li, Gu, and Zhang, Feng et al. (2015) describes how to use
annotations to convert UML class diagrams into Cassandra (NoSQL) data
models. The authorsmap themeta-models of Cassandramodels to UML class
diagrams. Before the transformation, users must announce or clarify which
properties correspond to which sort of key (partition, composite key, and
clustering key). The number of collections in the modified Cassandra model
exceeds the number of classes in the UML class diagram. Because users must
manually add annotations, the procedure is not automated.

To assist students in their study of model-driven engineering (MDE),
Batory and Azanza (2017) created a tool called MDELite. The meta-
model of a relational database was specified using the Prolog programming
language. They also used translation techniques such as Model-to-Text
(M2T) and Tool-to-Model (T2M). The authors did not present any data
to support their claim that MDELite increases students’ productivity in
mastering MDE.

Brdjanin and Maric (2012) offer a method for automatically developing
an initial conceptual database model using UML activity diagrams frequently
used to represent business operations. They create a set of formal rules that
may extract participants and business objects from activity diagrams and
produce corresponding classes and associations in a UML class diagram rep-
resenting the conceptual database model. Using a real-world business model,
the authors constructed an automatic generator based on these guidelines
and tested its effectiveness. There is still opportunity for further research and
advancements because the study needs to say more about the effects of con-
trol patterns or the viability of expanding the rules to cover entire company
models.



Modeling Low-Code Databases With Executable UML 439

METHODOLOGY

Specifically focusing on the Baserow end-user database, this section describes
the process used to construct the framework for converting UML class models
into an open-source end-user database and developing an abstract RESTful
web service component using Python’s Flask. Themethodology has four main
steps: Using StarUML, create the UML class model. Then, extract the per-
tinent data from the produced XMI file. Then, use Baserow to create the
database schema. Finally, use Flask to develop the REST API. The structure
of using the application is shown below (Fig. 1).

Figure 1: Structure of using the API.

The suggested framework is made to automatically turn UML class models
into Baserow database schemas and provide a RESTful web interface for
interacting with the resulting databases. The following workflow forms the
foundation of the framework:

• Use the StarUML program to create a UML class model.
• Using the XMI extension, export the model as an XMI file.
• Use the created program to process the XMI file and extract the classes,

attributes, and associations.
• Send Baserow API calls to build tables and fields based on the extracted

data.
• Use Flask (Python) to implement a RESTful API to give the newly

constructed database a web interface.

With the help of the StarUML program, a UML class model is first created,
allowing for the visual representation of the database schema, including the



440 Bubalo and Tanković

classes, attributes, and associations. The class model should appropriately
reflect the intended structure and relationships of the database.

The StarUML-provided XMI extension exports the finished UML class
model as anXMI file. The information required to create the database schema
in Baserow is in the XMI file, which is used as the application’s input.

The program extracts classes, attributes, and associations after it has read
the XMI file. While modeling, users need to add annotations to the attributes
of a class to specify the corresponding field types in Baserow, such as adding
a “created on” annotation to create a “Created On” field type in Baserow.
With the help of this data, the application asks the Baserow API to add the
necessary tables and columns to the Baserow end-user database. The rela-
tionships, structures, and annotated field types specified in the original UML
class model are reflected in the created database schema in Baserow.

Finally, a web interface for Baserow’s freshly built database is implemented
using Flask (Python) and a RESTful API. To efficiently interact with the
database, the API includes a variety of query parameters and filtering options
in addition to conventional CRUD operations (Create, Read, Update, Delete).
Developers can use the API to include the created database in their applica-
tions, providing a simple and effective method for managing and modifying
data.

IMPLEMENTATION

This section explains how the suggested architecture is implemented to con-
vert UML class models into an open-source end-user database using the
Baserow platform and create a RESTful API using Flask (Python). The four
main steps in the implementation process are as follows: The creation of the
tool, the extraction of tables, attributes, and connections from the XMI file,
the generation of the database schema in Baserow, and the use of Flask to
construct the RESTful web service component are all steps in the process.

Design and Development of the Tool

The created program is intended to be used as a command-line tool that takes
an input XMI file and constructs the appropriate Baserow database schema.
Pythonwas used to create the tool because of its vast library support and user-
friendly interface. The application comprises various modules that interface
with the Baserow API, parse the XMI file, extract the pertinent data, and
construct the RESTful API using Flask.

The app provides the following functionalities:

• Uploading, updating, and deleting XMI files through the “/files/” route.
• Performing CRUDoperations onUMLmodels through the “/uml_models/”

route, which includes providing Baserow database credentials, generat-
ing the database based on the uploaded file, and managing the uploaded
models.

• Mapping components retrieved from the XMI reader to Baserow tables
and fields using the baserow_init module.

• Sending requests to Baserow through the baserow_client module.



Modeling Low-Code Databases With Executable UML 441

• Implementing CRUD operations for various routes using the API files
within the “app/api” folder.

The app allows users to upload XMI files and interact with them using the
“/files/” and “/uml_models/” routes. The “baserow_client” module commu-
nicates with Baserow, while the baserow_initmodule processes the XMI files,
filters components, and maps them to Baserow tables and fields. The API
files within the app/api folder handle the CRUD operations for the different
routes, enabling users to interact with the data and the generated databases.

Extraction of Tables, Attributes, and Connections From the XMI File

The application reads the XMI file and uses an XML parser to extract the
necessary data from the UML class model regarding classes, attributes, and
associations. The parser finds classes, attributes, and associations by iterat-
ing over the XML elements and filtering according to the proper tags and
attributes. After the pertinent data has been collected, it is saved in data
structures (such as dictionaries and lists) to be processed later.

Generating the Database Schema in Baserow

The application sends requests to the Baserow API for the Baserow end-
user database’s corresponding tables and fields to be created using the data
extracted from the XMI file. Table creation, field adding, and establishing
connections between tables are all requests sent through the API. The pro-
gram also manages any faults and exceptions, such as invalid input, login
problems, and server errors, that may arise while communicating with the
Baserow API.

RESTful Web Service Component Implementation With Flask

A RESTful API uses Flask to give a web interface for interacting with the
newly created database after the database schema has been generated in
Baserow. In addition to additional data querying and filtering endpoints,
the Flask application defines several routes for managing CRUD operations
(Create, Read, Update, Delete) on the database tables.

In order to enable secure access to the database, the RESTful API imple-
mentation also contains mechanisms for user input validation, appropriate
error handling, and authentication. Developers that want to incorporate the
produced database into their applications can access the Flask application by
deploying it on a web server.

In conclusion, implementing the suggested framework streamlines the
development process andmakes it more effective for software engineers, espe-
cially those with less experience or students learning UML class modeling. It
automates the conversion of UML class models into an open-source end-user
database in Baserow and offers a RESTful API using Flask.

The implementation of this project can be found in our GitHub repository
https://github.com/AlanBubalo/modeling-low-code-databases-with-executable-uml.



442 Bubalo and Tanković

EVALUATION

The efficiency of the suggested framework in converting UML class mod-
els into an open-source end-user database using Baserow and offering a
RESTful API using Flask is the main emphasis of the evaluation. There are
four primary components to the evaluation: (1) the student internship use
case, (2) the efficiency of the transformation process, and (3) a comparison
to other approaches.

Student Internship Use Case

A student internship use case, which consists of a UML class model depicting
a database structure for managing internships, students, and related informa-
tion, is chosen to evaluate the framework. The developed application is used
to construct the UML class model using StarUML, export it as an XMI file,
and convert it into a Baserow database schema. Flask is used to implement
the RESTful API and provide a web interface for interacting with the created
database.

Figure 2: Student internship UML class diagram.



Modeling Low-Code Databases With Executable UML 443

Effectiveness of the Transformation Process

The produced Baserow database schema is compared to the original UML
class model to determine how well the transformation process worked. The
evaluation focuses on handling mistakes and exceptions throughout the
transformation process and the accuracy of table creation, field insertion,
and establishing linkages across tables. The outcomes show that the sug-
gested framework accurately converts the UML class model into a Baserow
database schema, saving time and effort over manual conversion. The UML
class diagram used to evaluate is shown in Fig. 2.

Comparison to Existing Solutions

The suggested framework is then contrasted with current approaches for cre-
ating RESTful APIs and converting UML class models into database schemas.
The level of automation, usability, features supported, and overall perfor-
mance are the main comparing criteria. The evaluation suggests that the
framework is a valuable addition to the low-code databases andmodel-driven
development fields since it provides a rare mix of automatic transformation,
an abstract RESTful web service component, and a smooth connection with
Baserow.

In conclusion, the evaluation shows how well the suggested framework
for converting UML class models into an open-source end-user database in
Baserow and offering a RESTful API using Flask works, as well as how usable
it is and how it can be applied. The framework can speed up the develop-
ment process and make it easier for students and less experienced software
developers to learn and apply UML class modeling.

DISCUSSION

The main conclusions, restrictions, and implications of the suggested frame-
work for converting UML class models into an open-source end-user
database using Baserow and offering a RESTful API using Flask are discussed
in the discussion section. Potential areas for further research are also noted.

Several important conclusions were made once the proposed framework
was put into practice and evaluated, including:

• The framework efficiently automates the translation of UML class models
into a Baserow database schema, avoiding potential errors and the time
and effort needed for manual conversion.

• The user-friendly and intuitive framework makes it easier for students
and less experienced software engineers to learn and apply UML class
modeling.

• The RESTful API implementation using Flask provides a web interface
for interacting with the generated database, improving its usability and
accessibility in distributed environments.

Despite the encouraging outcomes, the suggested paradigm has certain
drawbacks. The study focuses on Baserow as the intended end-user database.
It may be necessary to make further adjustments or expansions to make the
framework applicable to other databases and platforms.



444 Bubalo and Tanković

The evaluation is based on a use case from a student internship, which
could only include some scenarios that could occur in real-world environ-
ments for software development.

The suggested paradigm has some consequences for model-driven devel-
opment and low-code databases. The framework can accelerate development
and increase productivity by automating the conversion of UML class mod-
els into database schemas and offering a RESTful API. The framework can
also be a helpful teaching tool for students and less experienced software
engineers, assisting them in better comprehending and applying UML class
modeling in practical situations.

CONCLUSION

In this study, we proposed a framework for converting UML class models
into a free, open-source end-user database and a RESTful API using Baserow
and Flask. The framework automates the conversion procedure, avoiding
potential errors and the time and effort needed for human transformation.
Based on a use case for a student internship, our assessment showed how
practical, applicable, and compelling the suggested framework is, particularly
for students and less-experienced software engineers.

Although the framework has some drawbacks, such as a single-use case
evaluation and a focus on Baserow as the target database, it nonetheless sig-
nificantly contributes to low-code databases andmodel-driven programming.
It might speed up the development procedure, make learning and using UML
class modeling more manageable, and increase overall output.

Future development might improve the RESTful API implementation,
study performance, and scalability, and conduct more thorough user research.
It could also be extended to support additional databases and platforms. The
suggested framework could enhance the understanding and use of UML class
modeling and advance the development process in many scenarios.

The project’s GitHub repository offers an example folder with sample files
and resources to help users understand and use the presented methodology.

REFERENCES
About the Unified Modeling Language Specification Version 2.5.1. https://www.om

g.org/spec/UML/2.5.1/About-UML/
Batory, D., Azanza, M.: Teaching model-driven engineering from a relational

database perspective. Softw. Syst. Model. 16, 443–467 (2017).
Brdjanin, D., Maric, S.: An approach to automated conceptual database de-sign

based on the UML activity diagram. Comput. Sci. Inf. Syst. (21), 249–283 (2012).
Byrne, B., Shahzad Qureshi, Y.: The use of UML class diagrams to teach database

modeling and database design. In: Procs of the 11th IntWorkshop on the Teaching,
Learning and Assessment of Databases (TLAD). The Higher Education Academy
(2013).

Feng, W., Gu, P., Zhang, C., Zhou, K.: Transforming UML Class Diagram into Cas-
sandra Data Model with Annotations. In: 2015 IEEE International Conference on
Smart City/SocialCom/SustainCom (SmartCity), pp. 798–805. IEEE (2015).

https://www.omg.org/spec/UML/2.5.1/About-UML/
https://www.omg.org/spec/UML/2.5.1/About-UML/


Modeling Low-Code Databases With Executable UML 445

Hutchinson, J., Whittle, J., Rouncefield, M.: Model-driven engineering prac-tices
in industry: Social, organizational and managerial factors that lead to success or
failure. Sci. Comput. Program. 89, 144–161 (2014).

Li, Y., Gu, P., Zhang, C.: Transforming UML class diagrams into HBase based
on the meta-model. In: 2014 International Conference on Information Science,
Electronics and Electrical Engineering, vol. 2, pp. 720–724. IEEE (2014).

Soler, J., Boada, I., Prados, F., Poch, J., Fabregat, R.: A web-based e-learning tool for
UML class diagrams. In: IEEE EDUCON 2010 Conference, pp. 973–979. IEEE
(2010).

Soumiya, A. E. H., Mohamed, B.: Converting UML class diagrams into tem-poral
object relational database. Int. J. Electr. Comput. Eng. 7(5), 2823 (2017).

Talesra, K., Nagaraja, G. S.: Low-code platform for application development. Int. J.
Appl. Eng. Res. 16(5), 346–351 (2021).


	Modeling Low-Code Databases With Executable UML
	INTRODUCTION
	Background and Motivation
	Objectives
	Scope and Limitations

	LITERATURE REVIEW
	METHODOLOGY
	IMPLEMENTATION
	Design and Development of the Tool
	Extraction of Tables, Attributes, and Connections From the XMI File
	Generating the Database Schema in Baserow
	RESTful Web Service Component Implementation With Flask

	EVALUATION
	Student Internship Use Case
	Effectiveness of the Transformation Process
	Comparison to Existing Solutions
	DISCUSSION
	CONCLUSION



