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ABSTRACT 

Human-machine Interface (HMI) is critical for safety during automated driving, as it serves 

as the only media between the automated system and human users. To enable a 

transparent HMI, we first need to know how to evaluate it. However, most of the assessment 

methods used for HMI designs are subjective and thus not efficient. To bridge the gap, an 

objective and standardized HMI assessment method is needed, and the first step is to find 

an objective method for workload measurement for this context. In this study, two 

psychophysiological measures, electrocardiography (ECG) and electrodermal activity 

(EDA), were evaluated for their effectiveness in finding differences in mental workload 

among different HMI designs in a simulator study. Three HMI designs were developed and 

used. Results showed that both workload measures were able to identify significant 

differences in objective mental workload when interacting with in-vehicle HMIs. As a first 

step toward a standardized assessment method, the results could be used as a firm ground 

for future studies. 
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Workload, Psychphysiological Measure, Transparency 

INTRODUCTION 

Human-machine Interface (HMI) of Automated Driving Systems (ADS) is a 

critical component that aims to facilitate an intuitive way for humans to interact 

with automation (Bengler et al. 2020). However, depending on the level of 

automation, the roles and responsibilities of human users may be constantly 

changing. Thus, the design of the HMI plays a crucial part in enabling a safe and 

efficient transition between the roles by providing critical and understandable 

information and making the automated system transparent. 

When evaluating HMIs, existing methods are mostly based on subjective 

questionnaires (Richardson et al. 2018; Voinescu et al. 2020), making them prone 

to biases and difficult to standardize. To resolve the problem, we proposed the 

Transparency Assessment Method (TRASS) in a previous study (Liu, Figalová, 

and Bengler 2022), where the transparency toward the HMI is estimated by 

evaluating the actual understanding and the workload of the user during the 

interaction. To further apply the TRASS in a dynamic environment (e.g., in 

simulator or test track studies), the workload estimation method must be adapted. 
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Multidisciplinary approaches have been used to measure workload in driving 

scenarios (Stapel, Mullakkal-Babu, and Happee 2019; Kim et al. 2018; Lim, 

Sourina, and Wang 2018; Matthews et al. 2019). Subjective mental workload 

measures like NASA-TLX are easy to assess and come directly from participants. 

However, these subjective mental workload assessment methods alone are usually 

inaccurate and unable to operate in real-time. On the other hand, 

psychophysiological measures enable a more objective and continuous assessment 

of the mental workload. With the non-intrusive sensors, the experimental process 

becomes more efficient, and the resulting measurements are also more reliable. 

In this paper, we present a simulator study where electrocardiography (ECG) 

and electrodermal activity (EDA) are used to estimate the objective workload of 

participants when interacting with AV HMIs. The aim of this paper is to evaluate 

the effectiveness of these psychophysiological measures in finding differences in 

mental workload when interacting with different HMI designs in simulated 

driving. To the best of our knowledge, this is the first study that applies these two 

psychophysiological measures to estimate the mental workload of different AV 

HMIs. The main novel contribution of this paper is that the results of these real-

time and objective workload measures could be further applied for researches in 

high-fidelity AV environments and HMI design and evaluation processes. 

RELATED WORKS 

Psychophysiological measures have been widely adopted in the driving context to 

assess many psychological constructs, such as workload and stress, owing to their 

sensitivity and accuracy in detecting mental workload (Meng, Zheng, and Huang 

2022; Lohani, Payne, and Strayer 2019). Besides, they can also capture dynamic 

changes in workload that might be difficult to detect with subjective or behavior 

measures (Charles and Nixon 2019). In this study, we use ECG and EDA for their 

reliability in short task duration and sensitivity in continuous mental workload 

detection (Baek et al. 2015; Yoshida et al. 2014). 

Electrocardiography 

Electrocardiography (ECG) is a method commonly used to capture the electrical 

activity of the heart. From a series of heart beat waves, heart rate (HR) and heart 

rate variability (HRV) could be calculated, analyzed, and used to estimate mental 

workload (Heine et al. 2017; Shakouri et al. 2018). HR was found to increase with 

the increase in the mental workload, while the HRV decreased. 

Heart period (R-R interval) could be derived from the time intervals between 

heart beats (R peaks). By converting the heart period (usually in milliseconds), we 

could obtain the heart rate (usually in beats per minute). On the other hand, HRV 

metrics are more versatile and could be categorized into frequency domain and 

time domain. In the frequency domain, methods such as low-frequency (LF) 

power, high-frequency (HF) power, or LF/HF ratio are often used (Alaimo et al. 

2020). While in the time domain, the standard deviation of R-R intervals (SDRR) 

and root mean square of successive differences between normal heartbeats 

(RMSSD) are widely adopted. However, literature shows that the RMSSD is one 

of the most robust workload measurements, which is also reliable in ultra-short-
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term analysis (measurement duration less than 5 mins) (Shaffer and Ginsberg 

2017; Baek et al. 2015). 

Electrodermal Activity 

Electrodermal activity (EDA) reflects changes in the electrical potential of the skin. 

It has been commonly used as an objective workload indicator in simulators and 

real driving studies (Yoshida et al. 2014; Daviaux et al. 2020). Two components 

are usually derived from the EDA signals, which are tonic and phasic. The tonic 

component is the slowly changing in the electrical conductivity level, also known 

as skin conductance level (SCL). In comparison, the phasic component describes 

the event-related change that increases the magnitude of electrical conductance, 

also called skin conductance response (SCR). Both SCL and SCR are found 

sensitive to changes in mental workload. SCL was found to increase with the 

higher workload during real-driving scenarios (Mehler and Reimer 2019), while 

higher SCR values were found with higher mental demands (Foy and Chapman 

2018). 

METHODOLOGY 

Participants 

Twenty-four participants were recruited for this study, where eight were male, 15 

were female, and one was diverse. The ages ranged from 22 to 30, with mean age 

= 27.92, 𝑆𝐷 = 4.34. All of the participants came with valid driving licenses, and 

they had held them for at least three years (𝑀 = 8.03, 𝑆𝐷 = 3.78) 

Human-machine Interface Designs 

Three different SAE Level 2 HMI designs were developed and applied in the 

driving simulator, as shown in Figure 1. Following the design principles for 

human-computer interface and results from the previous study (Liu, Figalová, and 

Bengler 2022), we developed these three in-vehicle HMIs that are distinct in 

transparency and workload required to understand. The Fog HMI design should 

require the highest amount of mental workload during the interaction, owing to its 

small icons, low contrast color, and the fact that there would be no feedback when 

the system fails to activate. In contrast, the Trans HMI provide clear graphical 

designs, with big and high contrast icon and feedback information when necessary, 

hence should provide participants with the highest transparency and relatively low 

mental workload during the automated driving. The last HMI design is the Trans-

fog HMI, which shares the same visual clarity as the Trans HMI but has no 

feedback information, similar to the Fog HMI. 

Figure 1: Illustration of HMI designs used in the driving simulator. 
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In the previous study, these three HMI designs show significant differences in 

subjective workload measured (NASA-TLX). The same approach would also be 

included in this study as a reference to the previous one and others in the literature. 

Psychophysiological Measures 

The ECG electrodes were placed in the common Lead II Configuration, while the 

EDA electrodes were mounted on the left foot to minimize the noise from the hand 

and right foot movement during driving. Usually, the EDA electrodes are placed 

on palmar sites or fingers, but foot placement is recommended when palmar sites 

or fingers are not available or suitable for placing EDA electrodes (Hossain et al. 

2022). All electrodes are connected to a wireless trigger for LiveAmp, and the 

continuous signals were recorded and saved on a remote device throughout the 

experiment. The data were recorded with a 500 Hz sampling frequency and 

preprocessed in the Matlab version R2022a. 

Figure 2: Illustration of the raw ECG signal and processed R-R interval (left) and skin 

conductance response (right). 

Heart Rate Variability (HRV) 

In this study, we use the root mean square of successive differences between 

normal heartbeats (RMSSD) as the metric among the time domain heart rate 

variability (HRV) for its robustness and sensitivity in ultra-short-term workload 

measurement. To obtain the RMSSD, we first need to calculate the time differences 

between consecutive heart beats (or between R peaks). Then, average the squared 

values of those time differences. Finally, we take the square root of the average 

obtained and have the RMSSD over the designated duration. Before the RMSSD 

calculation, the raw ECG signal was filtered and differentiated for clearer R-R 

intervals, as shown in Figure 2. Ten seconds before and after the activation of the 

Level 2 ADS were used as an epoch representing the interaction period between 

the participant and the HMI design. During this time, participants were required to 

monitor the HMI closely to answer the following question when the driving 

simulator was paused or stopped. 

Skin Conductance Response (SCR) 

In this study, we intend to capture the rise of skin conductance with the EDA signal. 

As the cognitive load rises, so does the skin conductance value, and this change in 

EDA is the skin conductance response (SCR). After the initial stimulus, there is 

usually a 2-5 seconds delay before the skin conductance begins to rise (see Figure 
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2). After the rising phase, the skin conductance value reaches the peak and begins 

to descend. This difference in skin conductance value between the initial stimulus 

and the peak after the delay is the SCR magnitude. We collected a 10 seconds 

epoch after the activation of the Level 2 ADS (stimulus) and calculated the 

corresponding SCR values. 

Self-reported Workload Measures 

Two subjective workload measurements were included in this study. The first one 

is the National Aeronautics and Space Administration-Task Load Index (NASA-

TLX) (Hart and Staveland 1988), which is a six-item questionnaire. The average 

across the six workload related factors was calculated without the weighted 

parameter. The second subjective workload measurement was derived from the 

previous study (Liu, Figalová, and Bengler 2022), where participants were asked 

to evaluate whether they agreed they could understand and obtain critical 

information from the HMI design. They were asked if they agreed that the HMI 

design was easy to understand. All three questions were scaled from 0 to 100. 

Procedure 

 

Figure 3: Illustration of the driving simulator setup and experimental procedure. 

The study was conducted in a static driving simulator with a field of view of 

120∘, as illustrated in Figure 3. The front panel consists of three screens with the 

scenes projected from three projectors respectively. It also has rear, left, and right 

mirrors, which are small LCD displays. The software SILAB was used to create 

the 4-lanes highway scenario. A touch screen was fixed on the right-hand side of 

the driver’s seat, where automated cruise control (ACC) and L2 automation 

activation buttons were shown. 

When participants arrived, we welcomed them and provided a brief study 

overview. A pre-recorded video containing detailed instructions was played to 

ensure all participants received the same information. Afterward, participants were 

asked to fill in a demographic questionnaire. In the meantime, experimenters set 

up the ECG and EDA electrodes and ensured signals from the amplifier were 

normal. Participants were then brought to the driving simulator and started a 

familiarization test drive. During the test drive, the baseline ECG and EDA data 

were also collected. After the familiarization, the formal test would begin if no 

symptoms of simulator sickness were shown. 

The experimental procedure of this study is shown in Figure 3. In each trial, one 

of the three HMI designs was applied randomly, and two surveys were presented 

to the participants at different stages. Both surveys consisted of a NASA-TLX 

questionnaire and a subjective transparency test and would later be used to 



Workload Assessment of Human-Machine Interface: A Simulator Study with Psychophysiological Measures 551 

compare to the psychophysiological measures. The first and second surveys were 

used to estimate the subjective workload the HMI design required when the ACC 

was activated, and when the Level 2 (L2) ADS was activated. respectively. In each 

trial, participants were asked to start the vehicle and drive from the shoulder to the 

right lane on the highway. Meanwhile, they could activate the ACC function on 

the panel right to the steering wheel whenever they felt comfortable. At the 

moment the ACC button was pressed, the ADS began the longitudinal control, 

followed by a five seconds countdown before the simulator went into a pause. 

When the simulator was paused, all the screens dimmed and the sound effects 

volume lowered in a fade-away pattern to avoid simulator sick. Then, participants 

were asked to complete the first survey and inform the experimenter when they 

finished. After the first survey, the simulation resumed, and participants were 

asked to activate the L2 ADS whenever they felt comfortable. Five deconds after 

the L2 button was pressed, the simulation stopped (also in a fade-away pattern), 

and the second survey was presented and asked to complete carefully. Participants 

had to go through all three HMI designs in a counterbalanced order, where for each 

HMI design there would be four different traffic layouts, making a total of 12 trials 

for each participant. The ECG and EDA signal was recorded throughout the study. 

Finally, participants were compensated at the end of the study after the feedback 

section about the procedure, questionnaires, and HMI designs. 

RESULTS 

In this study, we attempted to determine if different HMI designs would 

significantly affect the mental workload assessed with psychophysiological 

measures. However, self-reported workload measures were also used as a reference 

to the previous work and also to future studies. Repeated measure ANOVA was 

used to test the significance of the differences in ECG, EDA, NASA-TLX, and 

subjective transparency data. Multiple comparisons with Holm’s correction were 

made if necessary. 

Psychophysiological Measures 

We can see from Figure 4 that the same correlation in mental workload among 

HMI designs is shown, where the Trans HMI demanded the lowest workload 

during the interaction, followed by the Trans-fog HMI, and lastly, the Fog HMI. 

The time domain HRV, RMSSD, were found to be significantly different among 

those three HMI designs 𝐹(2,522) = 7.25, 𝑝 < 0.001, 𝜂𝑝
2 = 0.027, where the 

Trans HMI had the highest RMSSD, representing that it demanded the lowest 

cognitive load during the interaction. A similar outcome was found on the SCR 

values, where the effect of HMI designs was also found to be significant 

𝐹(2,522) = 3.372, 𝑝 = 0.035, 𝜂𝑝
2 = 0.013, and that the Trans HMI had the 

lowest SCR, which again confirm the finding that the Trans HMI demand the 

lowest cognitive load when interacting with the ADS.  

As detailed in the Table. 1., post hoc comparisons were conducted for both 

psychophysiological measures. The RMSSD of the Trans HMI was found to be 

significantly higher than both the Fog and Trans-fog HMI designs, representing a 

lower workload demand than the rest two. No significant difference in RMSSD 

was found between the Fog and Trans-fog HMI designs. A similar result was found 
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that the SCR of the Trans HMI design was significantly lower than that of the Fog 

HMI design. However, no significant difference was found between the Fog and  

the Trans-fog HMI designs and the Trans and the Trans-fog HMI designs. 

Figure 4: Relationships between psychophysiological measures for workload and HMI 

designs. (RMSSD: root mean square of successive differences between normal heartbeats. 

SCR: Skin conductance response) 

Table 1. Post Hoc Comparisons on HMI Designs for Psychophysiological Measures. 

  RMSSD SCR 

  t Pholm t Pholm 

Fog Trans -3.31 0.003 2.43 0.047 

 Trans-fog -0.024 0.98 2.09 0.075 

Trans Trans-fog 3.29 0.003 -0.33 0.744 

Self-reported Workload Measure 

We see the same pattern in self-reported mental workload among the HMI designs 

from Figure 5, where the Trans HMI had the lowest subjective workload and 

highest self-reported transparency. The NASA-TLX scores were found to be 

significantly different among those three HMI designs 𝐹(2,260) = 3.80, 𝑝 =
0.028, 𝜂𝑝

2 = 0.027, where the Trans HMI got the lowest averaged NASA-TLX 

score, representing that it required the lowest subjective mental workload. A 

similar outcome was found on the subjective transparency scores, where the effect 

of HMI designs was also found to be significant 𝐹(2,260) = 49.88, 𝑝 <
0.001, 𝜂𝑝

2 = 0.27. 

Post hoc comparisons were conducted for self-reported workload measures, as 

shown in Table. 2. The Trans HMI design had significantly lower NASA-TLX and 

higher subjective transparency scores than the Fog HMI design. But no significant 

difference was found between the Trans HMI and the Trans-fog HMI designs in 

NASA-TLX or subjective transparency scores. Between the Fog HMI and the 

Trans-fog HMI designs, the subjective transparency score of the Trans-fog HMI 

design was significantly higher than that of the Fog HMI design. But the effect was 

not found between these two in the NASA-TLX scores.  
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Figure 5: Relationships between self-reported measures for workload and HMI designs. 

Table 2. Post Hoc Comparisons on HMI Designs for Psychophysiological Measures. 

  NASA-TLX Subjective Transparency 

  t Pholm t Pholm 

Fog Trans 2.75 0.019 -8.71 < 0.001 

 Trans-fog 1.25 0.27 -7.15 < 0.001 

Trans Trans-fog -1,51 0.27 1.77 0.079 

DISCUSSIONS 

We attempted to evaluate the sensitivity and effectiveness of psychophysiological 

measures in identifying different mental workloads required when interacting with 

different in-vehicle HMI designs in this study. We used the three HMI designs 

developed in the previous study, which were found to result in different self-

reported workloads as the workload variable. Results from RMSSD suggested that 

the ECG measurement and the HRV analysis can be used to find differences in 

mental workload effectively. The Trans HMI was found to have the highest 

RMSSD during the interaction with participants, which suggests that it required 

the lowest workload among the three HMI designs. This was in accordance with 

the HMI designs and the other psychophysiological measures. The SCR was found 

to be the lowest on the Trans HMI design, representing that the Trans HMI design 

demanded the lowest workload since the rise of the SCR corresponded to the 

increase of the workload. Hence, the EDA, together with the SCR, could also be 

applied to investigate the differences in workload among HMI designs. 

The self-reported workload measures were also confirmed to have the same 

correlation in workload with the previous study and psychophysiological 

measures, where the Trans HMI design had higher NASA-TLX scores than the 

Trans-fog HMI design, and the Trans-fog HMI design than the Fog HMI design. 

It was also not surprising that the Trans HMI design had the highest score in the 

subjective transparency test since the lower the workload needed to understand the 

HMI design, the higher the transparency should be. 

Traditionally, the HMI evaluation processes are usually subjective and heuristic, 

making it difficult to be efficient and standardized. Hence, to develop a 

standardized HMI evaluation method, the inclusion of objective measures is 

critical and necessary. In our previous work, we developed a transparency 

assessment method, which evaluates HMI transparency by combining the true 
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understanding of the HMI and the workload required during the interaction. Now 

with the results from this study, the mental workload during the interaction 

between the users and the HMI designs could be estimated continuously and 

efficiently. Combining that with the proposed transparency assessment method, the 

assessment of the HMI designs could be adapted to environments with more 

dynamic interactions and be more efficient and reliable. 

CONCLUSIONS AND FUTURE WORKS 

In this study, we confirmed the effectiveness of two psychophysiological measures 

in evaluating the mental workload when interacting with in-vehicle HMI design. 

This finding could be a strong basis for the HMI evaluation process. The next step 

is to include the psychophysiological measure in the proposed transparency 

assessment method, to develop an objective and standardized HMI assessment 

method, and use it to increase the efficiency of the HMI design process. 
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