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ABSTRACT

Climate change and the resulting cascade of impacts pose a real and urgent threat
to human safety. Simultaneously, products from Artificial Intelligence (Al) research
have grown exponentially and show high potential towards use in climate adaptation.
However, an increasingly large barrier to responsive deployment and adoption of Al
tools into climate change adaptation workflows is the actionable knowledge discrep-
ancy between the fields of Al, Human Machine Teaming (HMT), Al Assurance, and the
work of climate adaptation decision makers. To ensure alignment, applications of Al
to climate change adaptation actions need a framework and knowledge base that map
development considerations to the decision maker workflow. This paper introduces
CHAAIS (Climate-focused Human-machine teaming and Assurance in Artificial Intelli-
gence Systems), a design standard and accompanying knowledge base detailing the
necessary human element of Al interaction in the high-risk domain of climate change.
CHAAIS incorporates direct user interaction, decision maker adoption considerations,
and downstream implications. Our process combines accepted HMT and Al Assurance
principles for ethical design while testing specific issues in their intersection in the cli-
mate change domain. Specifically, we demonstrate this process with a case study in
forestry and implications for wildfire management. The goal for the CHAAIS design
framework and knowledge base is to be both a living information source and an adapt-
able method of tailoring future climate change Al solutions for responsive deployment
directly informed by climate decision makers.

Keywords: Human-machine teaming, Artificial intelligence, Climate, Climate change, Al assur-
ance, Climate adaptation, High-risk domains, Wildfire

INTRODUCTION

Humanity is already feeling the effects of the threats posed by climate change
and the resulting cascading dangers (World Meteorological Organization,
2022). Climate adaptation decision makers work at allocating resources
towards mitigating, preparing, responding, and recovering from climate
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impact on communities (United States Federal Emergency Management
Agency (FEMA), 2023). Climate Decision Makers (CDMs) include a vari-
ety of experts working in the climate space, including policy makers,
emergency response teams, agencies allocating funding for climate-threat
infrastructure, conservation agencies, and any other group responsible for
generating and implementing courses of action that have climate relevance
(Orlove et al., 2020). CDMs are often overburdened with analyzing geocli-
matic datasets that are unstructured and cover large geographic areas with
high dimensionality. Moreover, climate agencies and groups are chronically
understaffed, and existing available tools are not optimized for the rapidly
evolving urgent needs of the climate domain (Friedman, 2023).

Research in analogous domains shows potential in applying Artificial
Intelligence (Al) to climate applications, as Al is equipped to glean insights
from large datasets which would otherwise transcend normal computational
requirements. When applying Al to high-stakes domains such as climate
change where human lives are affected, Al tools must be assured and trust-
worthy. Trust is a critical antecedent for adoption of Al (Dorton & Harper,
2021). Given the high-risk domain of climate, interventions must be care-
fully analyzed to avoid exacerbating climate injustice, or the disproportionate
impact of climate change effects on historically disadvantaged communi-
ties (University of California, 2022). Various frameworks and tools for
developing trustworthy Al rely on abstract principles and are difficult to oper-
ationalize by Al developers and other stakeholders (Munn, 2023; Dorton
et al., 2023). As such, Al developers need an actionable tool that bridges the
domains of technological integration and responsible design when applying
Al to climate.

Human-machine teaming (HMT) principles provide structure for creating
an effective user-centered tool for collaborating with humans (McDermott
et al., 2018). AI Assurance refers to the process of building trust and confi-
dence in artificial intelligence systems by ensuring that they are safe, reliable,
and aligned with human values (National Institute of Standards and Tech-
nology, 2023). It allows for measures of performance beyond accuracy.
Combining these fields offers potential solutions for responsible Al deploy-
ment at the development level instead of the broad institutional guidance that
currently exists (The Global Partnership on Al, 2021). Further, HMT and
Assurance both generally combine the technical and human considerations
for a problem that inherently involves both.

Al capabilities are usually developed and deployed as components within
larger sociotechnical systems, comprised of workflows, people, and technolo-
gies. Al must be developed under the holistic consideration of how it may
(sometimes adversely) affect the larger work system (Neville et al., 2022).
While AI has a reputation for being a ‘silver bullet’ for capability gains, there
are many cases where it has caused greater consequences in the long term
(Banerjee & Chanda, 2020).

It is difficult to predict adverse emergent effects from integrating Al into a
sociotechnical system (Dorton et al., 2023); however, it is the responsibility of
Al developers and those who deploy it to ensure their creations do no harm.
(Miller, 2011). This paper proposes an approach using HMT and Assurance
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principles which span these risks and offer a way to navigate them while
properly communicating impacts to users. These principles span knowledge
disciplines by translating between climate subject matter experts (the future
users of the system) and technical experts.

This paper introduces Climate-focused Human-machine teaming and
Assurance in Artificial Intelligence Systems (CHAAIS), a design framework
and accompanying knowledge base detailing and organizing the necessary
human element of Al interaction in the highly variable domain of climate
change. CHAAIS incorporates direct user interaction, CDM adoption con-
siderations, and downstream implications. Our process combines accepted
HMT and AI Assurance principles for ethical design while testing specific
issues in their intersection in the climate change domain. Specifically, we
demonstrate this process with a case study in forestry and implications for
wildfire management.

The CHAAIS framework and knowledge base is designed to offer a
common operating framework between Al developers, CDMs, climate pro-
fessionals, and policy makers. For Al developers, CHAAIS translates and
organizes Al capabilities into actionable outputs and processes for the CDMs.
They can leverage CHAALIS to translate complex Al technologies into capa-
bility gains and objectives within their workflows. Policy makers can utilize
the framework and organized knowledge of the Al system’s design process
within the knowledge base as a ‘receipt’ of good design justification, which
translates between domains and conveys trustworthy aspects to stakeholders
throughout the process.

CHAAIS: PROCESS FOR RESPONSIBLE DEVELOPMENT OF Al FOR
CLIMATE DECISION MAKERS

The CHAAIS process (Figure 1) provides a framework for developing Al
applications through two high-level iterative processes: understanding and
addressing stakeholder needs while understanding potential sociotechnical
impacts. Within these two high-level processes are five phases, which are
performed iteratively throughout the development process.

\l{] Iteration
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Figure 1: CHAAIS process for applying human factors and assurance in artificial
intelligence tools for climate decision makers.
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The first stage (addressing needs) emphasizes conceptualizing the Al appli-
cation in the context of users and their work. During this stage the developers
must ensure that the Al tool is addressing a defined need.

The second stage (understanding impact) focuses on recognizing and reme-
dying any adverse impact(s) of the proposed Al tool. While phases nominally
occur in sequence, CHAALIS is, in practice, an iterative process. Figure 2 pro-

vides further detail on the concepts and principles involved in each phase of
CHAALIS.

Case Study-Wildfire Management

CHAAIS was developed and refined through the development of the Aug-
mented Real Time 3-D Mapping with Intelligent Sensing Al (ART3MIS-AI)
System (Gandikota et al., 2022). The ART3MIS-AI System’s objective is
to transfer and link geospatial Al research capabilities to autonomously
extract critical metrics and representations for capability gains in wildfire
mitigation.
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Figure 2: Detailed concepts in chaais process for applying human factors and assur-
ance in artificial intelligence tools for climate decision makers.

ART3MIS was developed collaboratively with the United States Forest
Service Fire and Aviation Management (USFS FAM), which involved vis-
its to the Angeles National Forest (ANF). The ART3MIS-AI team worked
with USFS FAM to understand user workflows for gathering information
about areas that require mitigation techniques to minimize risk of future

wildfires and various factors that drive decision making for mitigation
implementation.
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Interviews (N = 12) were conducted with stakeholders across the CHAAIS
CDM workflow to understand their tasks, responsibilities, and roadblocks
they faced. These interviews drove the development of user stories and jour-
ney maps moving into Phase 1 of CHAAIS. This stakeholder research was
essential when establishing common ground with the Al In fact, consulta-
tion with user groups should be performed as much as possible throughout
the process, infused throughout the phases.

Phase 1: Identify Current Climate Decision Maker Workflows, Needs,
and Pains

Human-centered design processes start by understanding the target user’s cur-
rent workflows. Although climate missions can be viewed as an end-to-end
workflow, they are complicated by complexity in tasks, interdependencies
across tasks, personnel, and knowledge requirements. A detailed understand-
ing of CDM workflows, including their goals, methods, and tools/resources,
is necessary to design the Al system to complement and enhance their work.

Techniques such as journey mapping, empathy mapping, and task anal-
ysis can be used to break down the process into phases, and identify user
tasks, decisions, goals, resources, and challenges. For this particular appli-
cation we begin with the Observe, Orient, Decide, Act (OODA) Loop as a
baseline model of cognition for filtering and acting on information (Lewis,
2022). The OODA Loop approximates cognitive processes of many climate
applications, especially emergency response (Huang, 2015). We acknowledge
that there are other models of situation awareness (Endsley, 1995), sensemak-
ing (Klein et al., 2006), and decision making (Klein, 1993), and even formal
decision processes for course of action generation (Bryant et al., 2007); how-
ever, the OODA loop is sufficient for our purposes, as we can augment it
with additional sub-phases that map to observed decision making processes.
These sub-steps were derived from observed actions amongst CDMs based on
experience through case studies and are generalizable but need verification.

We define tools supporting the Observe and Orient phases as “Situation
Awareness” (SA) systems, while tools supporting Decide and Act phases as
“Decision Support” (DS) systems. This aligns with the distinction between
SA and decision making processes (Endsley, 1995; Pfaff et al., 2013).

Each type of Al system, (i.e., SA vs DS) will have unique issues with
engendering trust with end users, which is an already complex and context-
dependent phenomenon (Dorton & Harper, 2022). Users have been shown to
resist technologies that are more prescriptive in nature, rather than support-
ing their actual cognitive needs (e.g., exploring the options jointly) (Moon &
Hoffman, 2005).

Phase 1 Applied to Case Study

For applying Phase 1 to the ANF case study, we focus the findings here on the
Vulnerability and Risk Identification segment of the workflow in Figure 2.
Interviews with the ANF personnel indicated the need for improved remote
sensing data for effective utility. Current remote sensing imagery utilized for
fuel estimates not only remains outdated but is present at a 30m+ resolution.
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This is below the needed actionable fuel resolution of 3-5m in the current
active fire mitigation workflows.

Fire planners preferred more useful extracted metrics such as increased res-
olution of vegetation and stand structural features to calculate more accurate
fuel values (used for risk estimation) and more accurate measures for pre- and
post-analysis of mitigation techniques (e.g., prescribed fires). It was evident
that ANF could benefit from leveraging Al tools to augment their current
work.

Phase 2: Define Which Parts of the Process the Al Is Supporting

Phase 2 in the CHAAIS framework involves mapping Al components to spe-
cific tasks or functions that were enumerated in the previous phase. This
approach reduces the scope of the design effort and facilitates focused dis-
cussions among developers and CDMs. It aligns developers’ Al objectives to
user objectives, grounded in their actual workflows.

Within the CHAAIS framework, we categorize the Al component objec-
tives through their applied ‘capability gains’ in each step of the Phase 1 CDM
workflow. Figure 2 shows the set of capability gain modules selected during
observation of the CDM workflow and objectives in the ANF case study (e.g.,
Pattern Recognition, or Feature Extraction). It is important to note that the
design of the CHAAIS framework allows for the integration and application
of other capability gains beyond what are listed.

Phase 2 Applied to Case Study

For applying Phase 2 to the ANF case study, we focus on the choice of Al
System Component for the Vulnerability and Risk Identification segment of
the CDM workflow within Figure 2.

Stemming from the identified need for increased resolution and specific
metric extraction, the team focused on the category of Vulnerability and
Risk-Related Feature and Metric Extraction (Figure 2). After further design
discussions with the USFS FAM team, the Al system component identified to
achieve the objective was a series of modular design, deep learning object
detection models within the ART3MIS-AI System which performed both
2-D and 3-D vegetation object detection to extract useful variables such as
vegetation height, width, area, and biomass values.

Phase 3: Understand the Technical and Ethical Risks That Arise From
Creating and Deploying Al Solutions

Although AI systems can have great positive effects on climate by helping
in mitigation and management strategies, they can also create unintended
harmful repercussions or struggle to achieve their original objectives due to
technical risks to effective deployment. Each component of the Al system
poses its own impact, and as such each should be analyzed separately and as
a whole system.

The technical challenges in developing and deploying climate Al can result
in a system that does not serve its users. This is especially problematic in the
climate domain since developers must ensure that the benefits of the system
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outweigh the potential emissions posed by large-scale computing necessary
for some Al methods. The Climate Change and Al: Recommendations for
Government Action report highlights potential challenges for implementing
Al for climate action (The Global Partnership on Al, 2021). For the purposes
of CHAAIS, the various challenges have been adapted into technical risks that
are relevant for individual Al system development and deployment, rather
than the government agencies the report originally targets.

Technical Considerations

. Climate Data Bottlenecks: Is there a lack of data in my domain applica-
tion? Will my system have access to existing data? Is the data collected
at a reasonable rate for my application?

. Domain-Specific Digital Infrastructure: Are there domain-specific tools
and software that the Al component must be compatible with? Are tools
and software necessary for this domain inaccessible?

. Compute & Hardware in Climate Agencies: Do the end users have
the necessary compute and hardware to run this Al component (in
combination with the rest of the system)?

« Research & Innovation: Is this Al component risking a “silver bullet”
approach instead of focusing on a well-tailored smaller application?
Does our Al component consider historically underserved areas?

. Deployment and System Integration: Does our Al component risk slow
adoption? Does our Al component have potential conflicts with legacy
infrastructure?

« Measurement: Does our Al component have ways of measuring impact?

. Capacity Building: Does our Al component rely on technical Al expertise
in the user-base? Does our Al component pose a risk of capture?

. Collaboration: Does our Al component discourage collaboration with
too narrow a focus?

Ethical Al is widely sought after and hard to establish. IBM provides a
list of principles to follow (IBM, 2022). Coeckelbergh discusses ethical and
political challenges posed by integrating Al for climate applications and calls
for responsible use of Al to dispute these challenges (Coeckelbergh, 2021).
Nordgren discusses similar ideas and organizes them into a set of principles:
Usefulness, Freedom, Justice, Responsibility (Nordgren, 2023). On the other
hand, Munn argues that it is fruitless to enforce ethics through the barrage of
buzzwords and principles, and rather suggests an approach that considers the
system as a whole, since simply providing principles as ideals results in a lack
of action towards these goals (Munn, 2023). CHAAIS attempts to combat
this pitfall by leaning on Nordgren’s principles but attempting to provide a
path forward by translating them into actionable questions.

Ethical Considerations

« Usefulness: How could the usefulness of this Al component fall short of
making up for the extra emissions from running it? Do the outputs of
this component map to the needs of users?
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« Freedom: How could this Al component infringe on the freedoms of
individuals and communities? Should restrictions or manual overriding
be in place?

« Justice: How could this Al component unjustly affect or unjustly
represent specific individuals or groups, especially those historically
marginalized? Does targeted data have proper scope and sampling?

. Responsibility: How can we, as the Al component developers, take
responsibility for and ensure safe and ethical operation of the AI? What
mechanisms can we establish for feedback and security? What happens
to the system and data in case of failure?

When considering ethical and technical risks separately, it may be difficult
to come up with “what ifs” that properly predict potential outcomes. Dor-
ton et al. discusses in Foresight for Ethical Al that it is notably difficult to
accurately predict Al harm (Dorton et al., 2023). A potential strategy is to
employ the use of a premortem to guide catastrophizing in an effective way
(Klein 2007; MITRE, 2023). Additionally, developers can give context to the
ethical considerations by examining the intersectionality with technical con-
siderations. For example, when examining justice, instead of attempting to
tackle justice across the entire Al component, consider its overlap with data
bottlenecks. How can limited data result in unjust representation? It is then
easier to translate this potential risk into something the Al developer can
tackle.

Phase 3 Applied to Case Study

From the Deep Learning Object Detection component chosen for Vulner-
ability and Risk-Related Feature and Metric Extraction, let’s examine the
Technical and Ethical Al Risk considerations, specifically Usefulness as
applied to Domain-Specific Infrastructure. FAM personnel identified specific
software that is highly integrated into their workflows; so, to ensure a useful
product, it was essential that outputs of the Al system be compatible with this
software. The consideration of usefulness also directly maps to user needs:
the outputs must be filling a demonstrated need, or they are excessive or
even frivolous. Specifically for ANFE, when we consider the Object Detection
Al component, identified needs include remote sensing imagery constraints,
model output efficacy, and visualization considerations. Now the challenge
is adequately minimizing this identified risk.

Phase 4: Apply Human-Machine Teaming Principles to Address Risk

Human-Machine Teaming principles provide a framework that makes it pos-
sible to address the identified technical and ethical risks. The CHAAIS frame-
work focuses on MITRE’s Human-Machine Teaming Principles, however
there are multiple frameworks that incorporate similar ideas (McDermott
et al., 2018).

For each identified technical and ethical risk, consider the list of HMT prin-
ciples (Observability, Predictability, Directing Attention, Exploring the Solu-
tion Space, Adaptability, Directability, Calibrated Trust, Common Ground,
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Information Presentation, Design Process, all of which are thoroughly dis-
cussed in MITRE’s document) and view the risk through that lens. Does
enforcing that principle help resolve the risk? If so, how and why might the
principle be violated? This helps developers understand how to concretely
improve the technical system to minimize the identified risk.

Phase 4 Applied to Case Study

Consider how the HMT principles listed above help ART3MIS developers
ensure the Deep Learning Object Detection component (Phase 2) extracts
metrics which are useful enough to justify the resources to operate the system
(Phase 3). Take for example the HMT principle of Common Ground: The
Angeles National Forest has uniquely large areas of chaparral vegetation —
the tool must be able to accurately detect this specific feature for the ANFE,
but also work for deciduous woods to be used more universally. The tool
must be able to adapt its assumptions of likely vegetation to the geographic
region to be useful to ANF wildfire mitigation stakeholders. To have effective
metric extraction, the Al system must be aligned with the context that the
user works in. Assurance techniques can be used to quantify how well the
AT achieves these HMT metrics but should also be bolstered by qualitative
analysis like whether users find the Object Detection reasonable given the
ANF geography.

Phase 5: Apply Assurance Metrics to Help Quantify and Measure Risk

AT Assurance provides a framework for the development and evaluation of Al
systems, ensuring that they meet the desired level of performance, safety, and
reliability. It conveys the confidence in the Al system’s ability to perform as
intended while adhering to ethical guidelines and minimizing the risks asso-
ciated with its deployment. This confidence is expressed through the careful
evaluation of various Al Assurance areas, which are integral to the overall
design process.

However, viewing Al Assurance as a separable static issue can lead to
problems in the development and integration of Al systems. It is essential
to consider Al Assurance as a dynamic, ongoing process that evolves with
the design and implementation of the Al system. CHAAIS follows the NIST
Al risk management frameworks values on Al Assurance distilled down
to robustness (reliability under many conditions), interpretability (ease of
human’s understanding processes), safety (minimization of risk), and fair-
ness (equitable treatment of individuals and groups) (National Institute of
Standards and Technology, 2023).

In CHAAIS, Al Assurance serves as the connecting link between HMT
requirements and Al System Design Integration, providing a means to explain
risk minimization solutions and convey them back to the stakeholder.

Phase 5 Applied to Case Study

AT Assurance is crucial to make the user trust and rely on the model’s Object
Detection (Phase 3) output. Al Assurance principles such as Robustness and
Interpretability are key ensuring stakeholders recognize a Common Ground
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(Phase 4) with ART3MIS which strengthens trust in the Al system. To guar-
antee reliable and consistent performance of the framework, the Object
Detection and Segmentation Al Modules must be robust to terrain and chang-
ing conditions for the ANF. This Common Ground is conveyed back to the
user using in an iterative process to build trust and reliance. These Al Assur-
ance measures are built into requirements for the Structural and Feature
Extraction Al modules.

Robustness techniques play a crucial role in enhancing the performance of
object detection and segmentation Al modules. These techniques include data
augmentation, where various transformations are applied to input images
to help the model generalize better (Na et al., 2022). Adversarial training
incorporates attacks during training (Li et al., 2021). Different regulariza-
tion techniques prevent the model from relying too heavily on single input
features. Ensemble methods combine the predictions of multiple models, and
error detection and correction mechanisms maintain performance even when
the primary model fails (Wyatt et al., 2022). Transfer learning helps the
model adapt to changes in input data distribution. Synthetic data can be
used to augment models’ training data with specific characteristics (Gao et al.,
2023). Together, these techniques ensure reliable and consistent performance,
ultimately strengthening trust among stakeholders.

Interpretability allows for stakeholders to understand the key factors
impacting an Al model’s predictions on identified risks, vulnerabilities, and
structural metrics. Tree based models provide inherent interpretability, which
can be utilized for higher risk tasks or as shadow models trained to explain a
black box model’s predictions. Deep models like Neural Networks can also
be interpreted through techniques like LIME (Ribeiro et al., 2016) or SHAP
(Antwarg et al., 2021) which can be used to generate explanations. Visual-
ization of the Al system’s decision-making process using tools like feature
importance plots, partial dependence plots, or decision boundaries can also
clarify the usefulness of different data portions that are informing decision
making and in turn, build trust.

Phase 6: Iterate

Organizing, pursuing, and leveraging the information gathered from CDMs
can be challenging, as these conversations often branch into multiple areas of
knowledge. Linear design frameworks fail to adequately capture the intrica-
cies of these discussions and the wealth of valuable information that emerges
from them. Moreover, the conclusions drawn from these discussions require
re-examination at the Al component level and the context of the entire Al
system. Creating a comprehensive user feedback mechanism for the overall
Al system is a non-trivial hurdle.

Within CHAAIS framework, Phase 6 highlights the importance of the
iterative back-and-forth cycle that occurs across all stages of CHAAIS. The
productive feedback discussions and questions that arise during application
reviews are vital for reaching well-founded conclusions.

Phase 6 Applied to Case Study

Although ART3MIS is primarily a SA system (observe and orient), it was
still important to gain information about other phases of the OODA Loop



CHAAIS: Climate-Focused Human-Machine Teaming and Assurance n

to see how the tool might expand in the future, and how specific metrics and
visuals that the Orient phase outputs could effectively be used by CDMs in
the remaining stages. For example, when proposing mitigation strategies dur-
ing the decide phase, stakeholders hold public town halls where community
members living at the impacted urban interface areas of the forest can pro-
vide input on changes to their “backyard”. Currently it is difficult to describe
changes resulting from a mitigation strategy like a prescribed fire and hard
for the public to imagine what a 30% reduction in fuels looks like, potentially
leading to distrust when reality does not align with expectation. This chal-
lenge during the decide phase of the OODA Loop prompted the design team
to incorporate specific interactive visuals into the output of the risk identifi-
cation (orient) phase that will make it easier to justify and visualize strategies
during these meetings.

DISCUSSION

In the ART3MIS application, the CHAAIS framework was applicable for
most Al components. While there was not always the possibility for perfect
mapping across all the phases, the phases did provide valuable structure to
ensure the development team had a comprehensive design and user research
approach.

Although CHAAIS was developed through a climate-focused lens, it is
generalizable to other high-consequence domains with similarly dynamic
workflows. The CHAAIS organizational framework for sifting through mul-
tiple domains is still notional and needs more work to verify the approach. As
the CHAALIS framework is further developed through additional use cases, we
will have more ability to identify patterns of success and room for refinement
and improvement.
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