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ABSTRACT

The future of human-autonomy teams shows a strong trend toward incorporating
features to allow humans to engage with their robotic counterparts in a more nat-
ural way. Yet, today, many current technologies (animated agents, computers, etc.)
interact with us in a restricted manner. In the best cases they know what to do, but
often lack the social intelligence to do it in a socially appropriate manner. As a result,
they frustrate us, and we quickly dismiss them, even though they can be useful. It
may instead be more useful to view how humans interact and work with their ani-
mal counterparts. Humans often fail to ascribe the same intelligence, consciousness,
or abilities to animals as they do to humans, and therefore may be less apt to get
frustrated when they does not perform as expected. Also, understanding what differ-
ent strengths and weaknesses each team member possesses will allow that team to
be more successful. Although animal-inspired designs have improved robotic move-
ment and manipulation, we maintain that design inspired by human-animal teaming
can provide similar gains in robotic development, especially concerning improved
human-robot interaction and teaming.

Keywords: Human-animal teaming, Human-autonomous robot teaming, Teaming,
Artificial intelligence

INTRODUCTION

In the present article, we focus on the interconnectedness of humans and
animals and how human-animal teams have allowed us to advance together.
We also discuss basic concepts within traditional human teaming and how
they can be adapted to human-autonomy teaming. Further, we describe
how these human-animal teams, and the complex relationships, attachments,
and challenges can serve as a model for other types of human-non-human
teams; namely human-robot or human-autonomy/AI teams. The human-
animal team analogy is particularly useful as a model for human-robot teams
because there are numerous similarities. Both animals and robots cannot
communicate information to their human counterparts via natural language.
Mental models, knowledge, and capabilities of animals and robots are both
limited and work differently when compared with human-human teams.
Additionally, issues of trust, interdependence, and information sharing are
comparable between animals and robots. Thus, human-animal team analogs
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can be leveraged to foster veridical mental models of robots that provide
more accurate representations of their near-future capabilities. Some robotic
analogs of human-animal teams currently exist but are often incomplete,
or do not fully replicate the full capacity of existing human-animal teams.
Therefore, we will focus on issues within and surrounding the current mod-
els of and components associated with traditional human-human teams, how
they relate to human-non-human teaming, and how we may exploit aspects
of human-animal teaming to derive a more effective analogous model for
human-autonomy teams.

HUMAN-NON-HUMAN TEAMING

Most teaming research has focused on dynamics between human team mem-
bers. However, teams with at least one or more non-human team members
have become increasingly popular and relevant, especially in hazardous, or
even impossible, situations for a humans presence, such as Mars exploration.
In this section, we will discuss human-agent teams, with a focus on humans
teaming with autonomous systems (embodied, for our purposes), which we
will refer to as human-autonomy teaming (HAT) and then posit the use of
other types of human-non-human teaming to create better HAT models. The
future of human-autonomy teams shows a strong trend toward incorporat-
ing features to allow the human to engage with their robotic counterparts
in a more natural way. Norman (2004) suggests that “products and sys-
tems that make you feel good are easier to deal with.” As the interfaces of
robots, computers, and inanimate objects are designed to be more “intelli-
gent,”humansmay adapt the way they interact with, communicate, and think
about such technology, treating objects more like humans as anthropomor-
phism asserts itself. Humans (and many other animals) display a remarkably
flexible and rich array of social competencies, demonstrating the ability to
interpret, predict, and react appropriately to the behavior of others, as well
as to engage others in a variety of complex social interactions. Developing
computational systems that have these same sorts of social abilities is a criti-
cal step in designing robots, animated characters, and other computer agents
that appear intelligent, that can cooperate with people as capable partners,
that are able to learn from natural human instruction, and that offer intuitive
and engaging interact for humans teammates.

Human-Agent teams vary greatly in their complexity and the role that
agents play in the team. Agents range from software automation to fully
autonomous embodied anthropomorphic entities (Fiore, Rosen, Garfield, &
Finkelstein, 2005). As computer and robotic technologies have improved,
agents have taken on many more roles and are capable of more autonomous
roles. Sycara and Lewis (2004) argued that these roles fall into three major
categories: 1) those that support individual team members and the individual
tasks they complete, 2) those acting as a team member, and 3) those support-
ing the team as a whole. Within these categories there may be great variation.
For instance, those agents acting as teammembers may be permitted the priv-
ileges of human team members, or they may be limited to tasks requiring less
responsibility (Groom & Nass, 2007).
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The team structure, goals, and dynamic dictate this difference, with HAT
defined as an autonomous system that works alongside humans as a team-
mate and participates in teamwork and taskwork to achieve commonmission
goals (McNeese et al., 2018). There has been much debate on what makes
an autonomous agent a teammate rather than a tool, but most agree that the
critical distinction in the continuum between automation and increasingly
autonomous systems. Autonomy refers to autonomous teammates that can
behave with intention, set their own goals, and can respond to situations
with greater independence and even without human direction (Shively et al.,
2016; USAF, 2013). In contrast, automation describes a system that will do
what it is programmed to do without independent action (Demir et al., 2017;
Vagia et al., 2016). Autonomous systems are non-deterministic, whereas
automation, given the same inputs, will offer identical outcomes every time
(Brill, Cummings, Evans, Hancock, Lyons, & Oden, 2018). Like human-
human teaming, human and autonomous teammates dynamically coordinate,
communicate, and collaborate in decision-making, planning, and task execu-
tion. This includes monitoring, backing each other up, making suggestions,
and making decisions together through continuous communication. More-
over, teaming requires teammates to perform complementary, non-redundant
functions towards a common goal (Brill et al., 2018). In the next sections, we
will focus on the specific components that comprise a team and how they can
contribute to mission success or failure.

Team Components

The team dynamic is an integrated and complex web of several different
factors, such as communication (both verbal and overt), interaction with
technology, team roles, and team knowledge. Team cognition and team per-
formance are areas of interest for numerous fields of study. It is important to
assess what characteristics of individuals and teams help distinguish success-
ful versus unsuccessful teams. Typically, effective teams are characterized by
the amount of coordination, cooperation, and communication exhibited on
both individual and team levels (Fiore et al., 2005). More recently, focus has
turned to the importance of team knowledge and team situation awareness
(Cooke et al., 2013).

Warner, Letsky, and Cohen (2005) have identified four stages of collabora-
tive teamwork: 1) Knowledge Construction, 2) Collaborative Team Problem
Solving, 3) Team Consensus, and 4) Outcome Evaluation and Revision. Each
of these stages has the potential for adoption for team process involving
non-human agents.Knowledge Construction consists of numerous sub-tasks,
including identification of required domain-specific knowledge, selection
of key personnel (team members), creation of communication pathways,
development of team member mental models, and knowledge acquisition.
Software agents and remotely operated robots may also be used for com-
munication of key knowledge, particularly in cases where data collection
is too dangerous for a human team member. Although agents are mostly
used for the first stage of team collaboration, there are possible future roles
reflecting the other three stages. Collaborative Team Problem Solving is the



100 Lum

stage in which most of the actual “teamwork” takes place. Here, solutions
are generated and evaluated. To this end, agents may serve as providers of
domain-specific knowledge. The third stage, Team Consensus, focuses on the
way in which a team negotiates and presents a mutually agreed upon solu-
tion (Warner, Letsky, Cowen, 2005). The final stage of team collaboration is
Outcome Evaluation and Revision. This post-consensus stage requires team
members to evaluate their solution and its ability to solve the problem at
hand. At this stage, team members may rework solutions and generate new
solutions when a previously agreed upon solution has failed.

Currently, automation may be used to generate simulations of teams solv-
ing a given problem. Because this automation works faster than real time,
evaluation and revision may be examined in an iterative process that would
normally have taken much longer. Although this use of agents is largely as a
glorified computer terminal, it may become increasingly possible for agents
to participate in the type of negotiations that during consensus making and
solution evaluation. As noted under the process of team consensus, many
attributes of both the agent and the humans might affect the degree to which
the agent’s evaluation is influential in the final evaluation of the team’s earlier
decisions. Current research onHATs suggests that agents can be programmed
to anticipate the needs of a team as it develops a mental model, and that
these teams perform better than those without such assistance (Yen, Fan,
Sun, Hanratty, & Dumer, 2006).

Sharing Unique Knowledge & Uncertainty Reduction
An important and dynamic aspect of a team involved sharing of unique
knowledge. Within the context of teamwork, sharing unique knowledge
involves the transfer of mission- or goal-relevant information held by one
teammate to another. In a human-agent team, this type of information shar-
ing may be even more important due to unique differences inherent in the
teammates. Sharing context-relevant information should be equally easy for
humans and agents, irrespective of whether sending or receiving. In this
arena, non-human agents may augment human knowledge, possibly due to
an agent’s ability to assess a situation in a unique and different way than a
human typically does. Specifically, an intelligent agent could be able to act as
an information provider, ensure the exchange of relevant knowledge among
all members, and communicate intent behind commands to allow lower and
reiterate the priorities of the situation (Lenox, Lewis, Roth, Shern, Roberts,
Refalaski & Jacobson, 1998). Agents, with their large processing capabilities,
may be able to ingest vast datasets for near instantaneous situation assess-
ment„ rapidly determining which knowledge is most relevant to share to
a team and important for trust. Of course, human experts may be able to
perform similar functions, though at far slower speeds.

Knowledge Interoperability, Sharing, & Transfer
This process involves individual team members sharing knowledge and infor-
mation with one another until all team members agree on the importance of
identified problems and issues. Research has shown that, when programmed
properly, groups of intelligent agents present information in a way that



Human-Animal Teaming as a Model for Human-AI-Robot Teaming 101

resembles a human, and are more likely to be trusted (Li, Montazemi, &
Yuan, 2006). These processes roughly correspond to traditional cognitive
views of a problem space with an initial position, a goal position, and a set
of operators that may be used to solve the problem (Letsky, Warner, Fiore,
Rosen, & Salas, 2007).

Knowledge Sharing and Transfer is a process by which team members pass
their individual understanding to other team members. This process is mea-
sured in terms of both the number of exchanges between team members and
the quality of the information that is passed (Letsky, Warner, Fiore, Rosen,
& Salas, 2007). Because of their ability to process and transmit a great deal
of information quickly, agents may excel in this area. However, the quality
of transmissions will likely depend upon whether the agent has been pro-
grammed with an appropriate mental model (Gentner & Gentner, 1983) and
whether the team members respond to the characteristics of the particular
agent (Kang, 2007).

Visualization and Representation of Meaning
Visualization and representation of meaning is a straightforward concept
involving the presentation of information in a way that is more coherent and
easily accessible than in raw data form. In situations with time constraints
and large data sets, agents will far surpass humans in the ability to provide
quality visualization of information. Agents process raw data in a systematic
way with unparalleled speed, and when programmed well, are able to com-
municate the information in a way that is easy for humans to understand
(Chalupsky et al., 2001). Humans on the other hand, may be constrained by
data analysis techniques, involved mathematical formulas, and particularly
with difficulty figuring out the appropriate way to display the knowledge in a
meaningful way to their teammates. If time is not an issue, then humans may
use computers to derive the meaning of a problem, and visualization aids to
display that information in an adequate and meaningful way.

As the team conceptualizes a problem, it is important to know which team
members possess which pieces of information. Information held by all mem-
bers of the team is referred to as congruent knowledge. However, in some
cases, each team member may hold different “pieces of the puzzle,” known
as complementary knowledge. Given their large memory capacity and inabil-
ity to be easily swayed, agents may be particularly useful for keeping track
of who has which pieces of information.

Intuitive Decision Making, Solution Option Generation & Appraisal
Intuitive decision making involves a process by which an individual makes a
decision by “collecting and analyzing information to come up with a solu-
tion with no specific solution mentioned” (Letsky, Warner, Fiore, Rosen, &
Salas, 2007). Letsky et al. purport this process involves little effort and is usu-
ally accomplished without conscious awareness, and thus based on a “gut
feeling.” Intuition may be fine-tuned through years of expertise, but some
speculate that intuition is “hard-wired” (Sauter, 1999). Many problems faced
by teams are vague and ill-defined, making fertile ground for expert human
decision makers. However, ambiguity in problem structure runs directly
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contrary to agents’ strengths, namely calculation and the rote execution
of commands (Woolridge & Jennings, 1995). Furthermore, there seems to
be human reluctance to relinquish full autonomy to non-human intelligent
agents. Agencies, including DARPA, have established rules restricting agent
abilities (Sierhuis et al., 2003). These restrictions govern the reasoning and
behavior of agents. Even without these restrictions, computer science is still
years away from creating intuitive beings (Woolridge & Jennings, 1995).

After information has been collected, the team generates a set of viable
solutions. Often, many possibilities are generated so that the team has alter-
natives should it decide that an initial solution is no longer viable. Further,
given an agent’s ability to be impartial, it is likely that less popular, but effec-
tive solutions will be retained for future review. Research has shown that
when an agent fulfils a “clipboard function” to keep track of solutions on a
team level, the team performs more effectively (Lenox et al., 1998).

One important distinction between an effective and ineffective team is a
proper appraisal of an outcome of a task (Cannon-Bowers & Salas, 2008).
This encompasses a dynamic evaluation of objectives that were met in a task,
and how the outcome that was influenced by the solution options selected.
Often this may be accomplished through feedback given by an external source
such as an experimenter or commander. The use of feedback and its struc-
ture will be discussed further in the next section. Both the human and agent
teammate may be able to appraise the outcome equally well, depending on
the situation. If the outcome is based on a quantitative measure of effective-
ness, then an agent may be more adept to appraise the situation. However, if
the outcome is based on a qualitative and more subjective assessment, then
the human might have the upper hand. This, of course, depends on how the
agent is programmed to assess such outcomes. As Rao and Georgeff (1995)
proposed, it is necessary for a system to have all of the information about the
objectives to be accomplished. If the agent hasn’t been programmed with this
knowledge or does not have the capability to acquire the knowledge, then it
will be unable to appraise the outcome at any level.

MODELING HUMAN-AI TEAMS FROM HUMAN-ANIMAL TEAMS

Humans and animals have co-evolved for millions of years. The animal con-
nection began with the exploitation and observation of animals by humans.
Over time, regular social interactions were incorporated into the animal con-
nection. This connection has also allowed us to utilize humans to help support
and augment our skills and abilities - physically, emotionally, and cognitively.
Of course, human-animal social relationships have changed over time as our
connection and understanding of these animals’ capabilities has evolved, as
well as through the co-evolution of our species. However, not all teams are
successful, and failures often come at a high cost. Why this is important is
that humans often do not ascribe the same intelligence, consciousness, or abil-
ities to animals as they do to humans, and therefore, may be less apt to get
frustrated when it does not perform as expected. Also, understanding the rel-
ative strengths and weaknesses of each teammember will ultimately facilitate
team success. Although animal-inspired designs have led to improvements in
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robotic movement and manipulation, we maintain that inspiration provided
by human-animal teaming can provide similar gains in human-robot interac-
tion and HAT concepts. As most people have far more experience interacting
with animals than with robots, they are generally more able to recognize limi-
tations in an animal’s ability to complete a task (Phillips, Ososky, Swigert, &
Jentsch, 2012). In consequence, robotic designs inspired by human-animal
relationships can lead to faster acceptance while fostering more effective
interactions between humans and robots, as humans tap into well-established
mental models, promote better understanding of near-future robots, and thus
appropriately calibrate trust in near-future robotic teammates. As a result,
they frustrate us, and we quickly dismiss them even though they can be use-
ful. It may instead be more useful to consider how humans interact and work
with their animal counterparts. Like anthropomorphism, zoomorphism cen-
ters on attributing qualities to non-sentient beings, but in this case it focuses
on animal-like characteristics (Karanika & Hogg, 2020). In many contexts,
human-animal teams are capable of solving complex problems well beyond
the capacity of any one individual team member (Salas, Rosen, Burke, &
Goodwin, 2009).

Although some aspects for HAT are inspired by similarities with human–
human teaming, the teammate-like relationship of HAT may also be inspired
from human-animal teaming. Human-animal teams can work on complex
tasks using the complementary capabilities of humans and animals working
together. In human–animal teaming, trust relies on knowing how your team-
mate will respond and interpreting your teammate’s behavior (Billings et al.,
2012; Phillips et al., 2016). The human can provide instructions or guidance
to the animal team member and receive alerts or signs from the animal team
member (e.g., working with a canine to search for narcotics) (Phillips et al.,
2016). However, the human teammate should be aware that animal reactions
are based on instinct and training (Billings et al., 2012).

Building mutual trust between teammates depends on communication
and levels of interdependence (Phillips et al., 2016). Communication relies
on conveying commands clearly and understanding the animal’s behavior
(Kuhl, 2011). Maintaining effective communication entails frequent interac-
tion and training. Performing independent tasks requires teammates to rely
on each other. Similar to an animal teammate, an autonomous teammate can
support the human teammate by extending their skills and abilities to achieve
the mission goals together (Billings et al., 2012). The approach taken in this
work relies more on the human-human team subset of human-autonomy
teaming metaphors.

CONCLUSION

Over the course of the human-autonomy teams research, the human
role evolved from control, to supervision, to collaboration (Parasuraman,
Sheridan, & Wickens, 2000; Kelley and McGhee 2013; Chen et al., 2018).
Systems that were manually controlled with automated components are
evolving towards autonomy in the sense that these systems can be aware of
their environment, react to change, and alter their abilities when necessary to
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achieve their prescribed objectives (Russell and Norvig 2009). To be success-
ful, human-autonomy teams require a collaborative relationship between the
agent and its human partner predicated on mutual transparency and bidirec-
tional communication (Chen et al., 2019). Initial forays into HAT research
exposed problems as well as provided solutions.

While in many regards, human-autonomy teams appear to be an opti-
mal solution—joining human ingenuity with computer processing capabil-
ity to increase the human’s scope of effectiveness and the team’s overall
efficiency—familiar human factor issues with automation surfaced—most
notably human out-of-the-loop and automation bias (Parasuraman & Riley,
1997; Wright, Chen, Barnes,&Hancock, 2017). Partnership between human
and agents presents problems as well as advantages: the two types of intel-
ligence are not symmetrical (Kahneman 2011). This model of agents is not
only constrained by its software underpinning but also by its difficulty in
adjusting to novel events and its limited ability to anticipate human informa-
tion requirements in a dynamic environment (McNeese, Mustifa, Cooke, &
Myers, 2017).

In many contexts, teams can solve complex problems well beyond the
capacity of any one individual team member (Salas, Rosen, Burke, &
Goodwin, 2009). Also, understanding what different strengths and weak-
nesses each teammember possesses will ultimately allow that team to bemore
successful. Although animal-inspired designs have aided in improved robotic
movement and manipulation, we maintain that design inspired by human-
animal teaming can provide similar gains in robotic development, especially
as it concerns improved human-autonomy team interaction. It is, therefore,
advantages to further examine the interconnectedness of a working animals
with their human and the ways in which this can serve as a better model for
human-autonomy teaming.
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