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ABSTRACT

We propose a method that allows pilot activity determination by clustering pilot
actions. Such systems are of great interest for assistance systems that adapt to pilot
performance. However, the determination of supervisory control tasks is non-trivial
since they can only be observed indirectly through pilot actions. Therefore, our former
approach of determining activities based on evidential reasoning resulted in a highly
fragmented pattern of recognized tasks over time. To address this, we suggest cluster-
ing these scattered patterns into partitions. This better reflects the activities of the pilot.
To evaluate the approach, we conducted an experiment in a fast-jet simulator with 11
participants. Using our former approach, we then determined the activities and applied
k-Means clustering to find partitions of interconnected activities. Lastly, we evaluated
whether these could be compared to the activities reported by the participants. The
results show that clustering may not be an effective activity determination method for
adaptive assistance systems. These systems represent a necessity in assisting pilots
in aerial Manned-Unmanned Teaming applications.

Keywords: Activity recognition, Human factors, Human-machine interaction, Adaptive assis-
tance, Agents, Human-autonomy-teaming, Manned-unmanned-teaming

INTRODUCTION

Aerial Manned-Unmanned Teaming (MUM-T) plays a key role in future mil-
itary operations. In these missions, unmanned aerial vehicles (UAVs) are
guided by manned aircraft. Accordingly, the pilots’ tasks are broadened
by a large number of supervisory control tasks in the cockpit. These tasks
include planning, monitoring, and guidance of highly automated vehicles
(Chen, Barnes and Harper-Sciarini, 2011). It is known that various prob-
lems related to human factors occur in such human-machine interactions
(Parasuraman et al., 1992; Parasuraman and Riley, 1997). To resolve these
problems, human-centered automation systems incorporate human factors
in their design (Billings, 1991). These can also be referred to as adaptive
assistance systems.

The working principle of adaptive assistance systems is based on the eval-
uation of the pilots’ mental states (e.g. situation awareness or workload)
(Feigh, Dorneich and Hayes, 2012). This is required since assistance agents
are designed to sense a demand for assistance and then initiate an adequate
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intervention strategy. To do this adaptively, the agent must also be aware of
the context (Colman et al., 2014).

One key context variable for an appropriate decision on the application of
an intervention strategy: what are pilots doing and what goals are they trying
to achieve? In the literature, this is often referred to as pilot activity (Schulte,
Donath and Honecker, 2016). Moreover, the determination of the activity
must be carried out in real-time. Therefore, assistance agents continuously
estimate the task context of the pilot and utilize it as a decision criterion for
assistance.

Figure 1: A Pilot operating UAVs interacts with the cockpit interface during an
experiment. The touch-sensitive tactical map is used to task the UAVs. Each gaze
interaction is tracked and passed by the eye-tracking system. Then, the observa-
tion generation in the aircraft interface uses the semantics of each gazed instru-
ment to infer what information the pilot perceived at a given time, according to
(Mund and Schulte, 2017).

There are several methods for generating observation data for activity
recognition. However, activity recognition systems for adaptive assistance
require context-rich observations. In this work, we capture manual interac-
tions (e.g., button presses) with a touch-sensitive display and gaze interac-
tions (e.g., looking at a cockpit instrument) with a gaze-tracker. From this,
semantic observations are generated that contain information about which
instrument was touched or looked at. This mechanism makes them context
rich. Figure 1 shows our setup (cockpit of a fast-jet simulator) in which we
apply this mechanism.

Evidential Reasoning Approach for Pilot Activity Determination

(Honecker and Schulte, 2017) developed a method that recognizes the tasks
being performed by the pilot in real-time. They consider this set of tasks as the
pilot activity. They used evidential reasoning for the determination of tasks.
For the recognition, each context-rich observation is interpreted as evidence
in the sense of the Dempster-Shafer theory. The degree of belief, doubt, and



Clustering to Determine Interconnected Activities 323

ignorance (Dempster-Shafer Triplet) for each evidence was evaluated experi-
mentally or defined by expert knowledge. The recognition model considered
task dependencies in a hierarchical task model.

Motivation for This Study

Figure 2 shows results using the described approach in a combat situation
in form of a task-time plot. The vertical axis lists the performed tasks.
The results were generated by the activity recognition in one of our fast-
jet simulators. In the scenario, the task was to suppress a hostile SAM-Site
(surface-to-air missile) using an unmanned vehicle. Therefore, the pilot
delegates the UAV and monitors the automation task.

The pattern of recognized tasks in
Figure 2 appears heavily fragmented in a temporal representation. This

mostly originates from the switching of visual attention during the supervi-
sory control tasks. These tasks can hardly be performed concurrently and are
therefore characterized by fast attention shifts.

Moreover, the approach by (Honecker and Schulte, 2017) can only deter-
mine tasks which are directly observable by human-machine interactions.
Thus, the results solely show granular, low-level tasks (e.g., button-presses
indicate the task Start EO Stream). However, mostly higher-level tasks can
be associated with mission tasks and are thus relevant for pilot assistance.
According to (Tschurtschenthaler and Schulte, 2023), they occur in the pilot’s
workingmemory and are therefore hidden from the observer. The importance
of the determination of higher-level tasks from the evidential-reasoning data
approach was also addressed in (Brand and Schulte, 2021).

Figure 2: Activities recognized over time in form of a task-time plot. Data was generated
using evidential reasoning. Degree of belief > 0.75 is colored blue. The data shows a
typical multitasking situation in MUM-T: The pilot delegates a UAV to attack a SAM-
Site and controls the aircraft in parallel (data was collected as part of this study). Tasks
in the grey area occur in the context of a superordinate sensor classification task.
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We observed that activity recognition results are fragmented, especially for
supervisory control tasks. Due to their high number in MUM-T missions, the
evidential-reasoning approach misses a higher-level reasoning of the output
data. For an expert, some of the scattered tasks are interconnected and repre-
sent an occurring superordinate task. Partitioning the task-time plot could be
a solution to overcome the issue with supervisory control tasks. For instance,
the tasks in the grey section of Figure 2 represent a single classification task
of the SAM-Site. This suggests that the scattered tasks share interconnectivity
in context of a higher-level task.

This paper presents a method to tackle the determination of the inter-
connected partitions by unsupervised clustering. For this, we conducted a
data collection experiment and used cluster methods on recognized tasks by
(Honecker and Schulte, 2017). Lastly, we compared the resulting clusters
with the reported activities of the participants.

Figure 3: Tactical situation of the experiment block 1a. The map shows the jet (bot-
tom), the hostile SAM-Site (red), and the UAV (white). The tasks of the participant and
automation are shown in the info boxes (added for this figure and not visible to the
pilot).

EXPERIMENT

Experimental Setup

For the study, we used a fast-jet simulator as shown in Figure 1. It covers
flight, UAV guidance and mission planning tasks within a MUM-T Scenario.
It has an exterior viewwith a heads-up display and three touchscreens asmain
display elements.Manual interaction with the fighter cockpit is carried out by
HOTAS (Hands on Throttle and Stick) for flight control. All other manual
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interaction with the system is done using touchscreens. A four-camera, 60
Hz eye-tracking system from SmartEye® was used for data acquisition. The
system can capture gaze on the external view and touchscreens. For activity
data generation, we used semantic observation generation and the activity
recognition from (Honecker and Schulte, 2017).

Experimental Design

The experiment consisted of six experiment blocks. The duration of each
block was around 5 minutes and included a main objective to be achieved.
It was either the suppression of a hostile building or SAM-Site. The main
objective demands execution of several tasks which are relevant in the context
of MUM-T. Thus, task performance was kept as naturalistic as possible.

In addition, the difficulty of achieving the main goal increased with each
block. The difficulty was intended to be mentally demanding through time
and payload constraints rather than complexity. It was decided not to ran-
domize the order of the blocks among participants, because we wanted to
ensure that every participant experienced the same increase in difficulty.
Figure 3 gives an overview of the goal, tasks, and the tactical situation of
experiment block 1a.

While designing the experiment, a hierarchical task model for the activity
recognition was created. It includes all directly observable and non-directly
observable, superordinate tasks. These tasks were relevant for achieving the
main objectives of the experimental blocks. Hereby, hierarchically 12 (first
level), 4 (second level) and 1 (third level – root) superordinate tasks were
created.

Participants

We conducted an experiment with 11 participants (male: 10; female: 1) aged
between 20 and 34 (mean age 23.6 y; SD: 3.9y). All participants had a high
level of experience either in video games (mean hours per week of video
games: 6.9h; SD: 7.8h), flight simulators (mean total hours in a fight simula-
tion: 42.9h; SD: 83.1h) or flight experience (mean hours of flight experience:
3.9h; SD: 3.1h). Questionnaires showed that all study participants demon-
strated a high level of motivation during the study (mean motivation [0;
10]: 9.0; SD: 0.9). To further increase motivation, pilot performance was
assessed with a score. Several factors were included in the score, such as
resource consumption (payload, fuel, etc.), asset loss and total mission time.
For gaze measurement, each participant was calibrated with the eye-tracker
just before the start of the experiment. Two of the participants wore contact
lenses for the experiments. Eye-tracking calibration data were found to be
good (mean accuracy for left and right: 1.71◦; SD: 0.35◦). All participants
provided written informed consent.

Procedure

Training for each participant took between two and three hours. Each train-
ing consisted of scenarios to train the basics of flying, UAV guidance, sensor-
and mission-management. Each participant had to successfully complete
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each task (required in each block) at least once. This was to ensure that
each participant was sufficiently familiar with the functions required for the
experiment.

Before each experiment block, the participant received a short briefing
about the mission objective and if constraints applied for the block. The
participant was not able to see the tactical map of the block until the simula-
tion started. We chose this approach to capture gaze during first sight of the
tactical situation. After each block, the score was reported to the participant.

After the experiment, a debriefing was conducted with the participants to
protocol what tasks were executed during the block experiments. For this,
we asked them to set labels in a task-time plot. During the debriefing, the
replay of the simulation was shown to the participants.

Data collection was followed by cluster analysis using the Python pack-
ages Pandas and SciKit-Learn (McKinney and others, 2010; Pedregosa et al.,
2011).

CLUSTERING OF PILOT ACTIVITIES

There are different known methods in clustering for activity recognition,
as reported in (Colpas et al., 2020). We decided to use k-Means clustering
(kMC) (centroid-based clustering method). It appears to be the most used
method in unsupervised activity recognition and a good starting-point for
this study. For the clustering itself, we used a two-staged clustering proce-
dure: (1) Sorting the tasks on the vertical task scale (as in Figure 2), and (2)
applying kMC.

The preprocessing step of sorting is imperative: kMC groups data points
together based on the minimized distance to the cluster centroids. However,
this cannot be natively applied to nominal scales (see alphabetically sorted
vertical task scale in Figure 2). For this, one needs a sorting and distance
assumption for the tasks in the vertical scale. For the first stage, we chose
two sorting strategies:

1. Model-based sorting (MBS): (Honecker and Schulte, 2017) used a task
model to group tasks. Thus, it is plausible to use the task model structure
as a basis for sorting the task scales. Sorting was done manually.

2. Connectivity-based sorting (CBS): Reordering of task scales can also be
done by searching for connectivity using agglomerative clustering. Such
approaches can be used without prior knowledge and reorder items on
a scale based on the minimal distance to each other. Using this heuris-
tic, tasks which occur simultaneously are grouped together. We used
hierarchical clustering as an agglomerative clustering method. Thus, the
sorting was done by computation.

kMC requires a predefined cluster number for clustering. We associated
the clusters with superordinate tasks from the task model. Therefore, we
decided to use 4 and 12 as number of clusters. The Elbow method suggested
an optimal number of 4 clusters for most of the data plots.

After the preprocessing with MBS/CBS and clustering with kMC with the
cluster number of 4 and 12, we inspected the quality of the cluster results.
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Inspection was done by visually comparing the task-time plots of the debrief-
ing protocols with the clustered plots. Subsequently, the quality was then
scored.

Figure 4: Clustering results from a single participant in experiment block 1a: Task-time
plot from the debriefings (top), results of the kMC task-time plot for 4 (mid) and 12
clusters (bottom). Prior to the kMC, CBS was applied to the activity recognition data.
The black vertical lines are considered as events (e.g., Start rolling: Begin of Take Off).
The long duration task Check map and Transit Flight are determined by the green and
yellow clusters in the 4-cluster-plot.
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We also wanted to see if the activity data of all participants led to com-
parable cluster results to assess reproducibility. To do this, we clustered each
participant’s cluster centroids of for each experiment block. Then we used
the Cluster-Sum-of-Squares (SSE) to determine the scattering magnitude of
all centroid points. We had the assumption that participants showed more
similar results which a lower SSE.

RESULTS

Figure 4 demonstrates the clustering results for a single participant in the
block experiment 1a as an example. Data was processed using CBS and kMC
(4 and 12 clusters). Note that the tasks on the vertical axis are sorted by
connectivity when CBS was used (compared to Figure 2).

Table 1. Scores of clustering results created by visual inspection. Score ranges from 0
to 10 (10 is the best, 0 is the worst).

Clustering Methods Mean Score Standard Deviation

CBS and 4 Clusters 6.8 1.9 (27.4 %)
MBS and 4 Clusters 9.4 0.9 (10.2 %)
CBS and 12 Clusters 6.9 1.8 (25.5 %)
MBS and 12 Clusters 9.0 1.2 (13.1 %)

By visual inspection, someone can see that long-duration-tasks (LDTs)
show a better match using kMC with 4 clusters (e.g., LDTs like Transit
flight). We found that this is mostly true for all participants and blocks.
Short-duration-tasks (SDTs) in kMC with 12 clusters slightly better matched
with the reported activities. However, SDTs are often grouped together in the
plots using kMC. In addition, we found that larger clusters (e.g., in LDTs like
Transit flight or Check Map) are often sliced into smaller clusters.

In all approaches, concurrent multitasking for SDTs is difficult to capture
by clusters. This can also be seen in the BDA, Bomb, Check Map and Transit
Flight tasks at the end of the experiment block in Figure 4.

The scoring of the results by visual inspection can be seen in Table 1. The
MBS showed better agreement between the debriefing protocols and the clus-
ter results. Also, the score standard deviation in MBS was much lower. The
use of expert knowledge in form of a task model seems to be more reliable
for grouping tasks than an agglomerative clustering approach. This originates
mostly from the grouping assumption by CBS which is based on connectivity
by time. However, this connectivity assumption is not fully satisfied in mul-
titasking situations: In these situations, CBS groups tasks even though they
may be different in contrast of the task context (see Fly Manually and Gain
SA Over Battlefield in Figure 4).

Figure 5 shows the SSE values for all clustered centroids. The MBS with
4 clusters is much less dispersed than the CBS with 4 Clusters. This can be
explained by the more reasonable task sorting using a task model. Both SSEs
in terms of the 12 clusters are much less dispersed. This is mainly due to the
reduction of data point outliers by increasing the number of clusters. Overall,
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it can be said that 12 clusters seem to show a high uniform quality of clusters
among all participants.

Figure 5: Comparison of clustering results between participants for each experiment
block: (a) kMC of the clustered centroids of each participant and experiment block 1a.
(b) SSE of all clustered centroids over all experiments for 4 and 12 clusters.

CONCLUSION

The kMC results show that the approach is not able to identify SDTs (e.g.,
tasks in the task context of UAV guidance or mission planning). This is
especially true when two or more tasks are executed in parallel. Greater
weaknesses are seen in tasks that exhibit a high degree of task switching
(like supervisory control tasks). Also, kMC algorithms solely use data points
to determine cluster boundaries. Therefore, time periods with multiple data
points are preferred over partitions with fewer data points. LDTs, such as
flight tasks (constant usage of HOTAS), are therefore much more repre-
sented in the cluster charts. Overall, results show that the clustering approach
can provide plausible results but is not suitable to identify tasks as intercon-
nected clusters with certain reliability. Moreover, interpretable results usually
involve a very high modelling effort.

With the presented clustering approach, it is also very difficult to incorpo-
rate the method in a real-time activity recognition. The partition into clusters
requires already completed task executions, which does not meet the require-
ments of an adaptive assistance system. However, this might be overcome by
dynamic clustering. Another approach would be to apply supervised learning
methods like support vector machines (SVMs) to the activity data. They can
also be used for real-time classification. Labelled data from the debriefing
protocols could then be applied as training data. SVMs can lead to reliable
classification results even with small data sets. However, this still needs to be
tested.

We see that CBS can provide meaningful grouping of tasks in cases where
human performance in a human-machine interaction is not fully understood.
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Therefore, it could be a viable method to support a hierarchical or cognitive
task analysis based on experimental data.
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