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ABSTRACT

Most driver monitoring systems (DMS) rely on cameras facing the driver while detecting
their gaze or head position. Both future automated driving (AD) in-vehicle interactions
and AD vehicle interior designs (e.g., seating arrangement) might drastically reduce the
effectiveness of such camera-based DMS solutions, however. Thus, alternative solu-
tions that do not rely on cameras, and therefore compatible with upcoming AD journey
experiences, are worth being investigated. Here, we studied the behavior of several
cardiac-based indices. We aimed to determine the effects of engaging in non-driving-
related tasks (NDRT) in a semi-dynamic driving simulator on heart rate and heart rate
variability parameters (here, we report the standard deviation of R-R intervals [SDRR]).
We developed a 2 (AD vs. manual driving [MD] modalities) by 2 (one-hand vs. two-hand
concurrent Task modality) within-participants experimental design. Thirty-two expert
drivers drove along two highway scenarios (∼ 22 minutes each) in daylight conditions.
Each scenario included four distraction periods. In each distraction period, participants
performed a concurrent task in addition to their main task (i.e., driving the simulator dur-
ing MD, supervising the system during AD). We monitored participants’ cardiac activity
and collected performance levels on the NDRT, driving performance, as well as subjec-
tive ratings of task load. Cardiac-based indices clearly differentiated Task modality, with
the two-hand task inducing higher heart rate and SDRR. Driving modality (MD vs. AD)
only influenced heart rate, which increased during MD. Driving performance and subjec-
tive ratings, as well as performance on the NDRT, were able to reflect the experimental
manipulation, with the two-hand concurrent task (in MD) being the most disruptive and
demanding condition. Overall, these findings have the potential to improve future DMS
design and road safety by providing accurate measurements of driver engagement. They
can be key to assess future driver-vehicle interactions using for example, non-contact,
more realistic, heart-rate radar-based sensor solutions.
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INTRODUCTION

Driving while engaging in non-driving-related tasks (NDRT) represents a
serious threat for road safety. Drivers focused on NDRT are less engaged
in the main task (i.e., driving) and can often experience overwhelming situ-
ations (both cognitive and physical). Overall, these situations are associated
with more frequent unsafe driving behaviors (for a broad discussion on
this issue, see Kauffmann et al., 2022). Recent technological developments
involving advanced driver assistance systems and, most recently, automated
driving (AD), have helped to play down this threat (Teodorovicz et al., 2022).
That is, while primary driving tasks are allocated to the automated system,
drivers can engage in NDRT without compromising road safety (Zangi et al.,
2022). However, also in highly AD, drivers are expected to take back vehi-
cle control at some points. Thus, systems and solutions able to monitor the
cognitive and physical state of the driver (will) play a crucial role in minimiz-
ing unsafe driving behaviors and reducing accidents (Hayley et al., 2021).
Indeed, the upcoming Euro NCAP Safety Assist protocol foresees incentives
for driver monitoring systems (DMS) that are able to detect distracted driving
(Mulhall et al., 2023).

DMS research has a long history, spanning nearly twenty years, but has
intensified over the last few years (Manstetten et al., 2020). Although sensi-
tive DMS solutions already exist and are being installed in affordable cars
or used for insurance applications, most of these solutions are based on
remote dashboard-mounted devices, relying on cameras facing the driver
while detecting their gaze/head positions (Tian et al., 2019) or facial features
(Diaz-Piedra et al., 2019). Future AD in-vehicle interactions (for a recent dis-
cussion on this topic, see Wilson et al., 2022) and future AD vehicle interior
design (e.g., seating configurations, Tremoulet et al., 2021) might drastically
reduce the effectiveness of DMS camera-based solutions. For example, the
occlusion of the cameras (e.g., when reading a newspaper) or the position of
the driver (e.g., while seating in a rotated and translated seat) might increase
the loss of information collected by the DMS, and consequently limit its pre-
dictive power. Thus, investigations on alternative solutions, compatible with
upcoming AD journey experiences –not relying on cameras–, are warranted.

Classical and recent studies from different transport domains have
explored the potential application of cardiac-based metrics –using free-
camera recording techniques– as suitable indices for tracking operator’s
functional state in response to task demands, including changes induced by
concurrent tasks (e.g., Jorna 1992; Wierwille and Eggemeier 1993, for a
recent review see Arakawa 2021). Yet, the difficulty of recording these indices
(noise-prone) outside of a laboratory environment, and of interpreting results
(hyper/hyposensitivity to different psychological, non-task-related factors),
have long been considered barriers to implementing cardiac-based metrics in
transport domains (Liu et al., 2021; Roscoe 1992). Thus, overall, the question
of how NDRT while driving modulates the driver’s cardiac response remains
unanswered. On the other hand, new sensor technology (hardware and soft-
ware) able to effectively attenuate noise motion artifacts (e.g., Arakawa
2021), new in-vehicle vibration-absorbing/mitigation solutions (Ma et al.,
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2022, Sharma et al., 2022), together with more than twenty years of research
on the issue, might offer cardiac-based metrics new opportunities within the
field of AD.

Here, we aimed to determine how driving while engaging in NDRT, with
different task loads, might affect cardiac-based indices of expert drivers.
Drivers underwent a set of standardized driving simulations with different
task complexity levels, in a semi-dynamic driving simulator. To externally val-
idate cardiac-based metrics, we collected driving performance (speeding time
and variation of the vehicle’s lateral position), as well as subjective ratings of
task load, all well-known indices of task load variations in driving.

METHODS

Experimental Design

We developed a 2 (Driving modality: automated [AD] vs. manual
[MD]) × 2 (Task modality: one-hand vs. two-hand concurrent NDRT)
within-participants experimental design. Participants drove along two high-
way scenarios (∼22 minutes each) in daylight conditions (midday, with 4
km visibility). Traffic density was controlled across the scenarios. Each sce-
nario included four 5-minute distraction periods, two in AD and two in
MD. In each distraction period (8 in total), participants performed a con-
current NDRT (further details are described below) in addition to their main
task (i.e., driving the simulator during MD, supervising the system during
AD). Participants were exposed to conditions following a counterbalanced
between-subjects basis.

Participants

Thirty-two participants took part in the experiment (mean [M] age = 44.16
years ± standard deviation [SD] = 1.83, age range: 42–46 years; 30 males).
All participants were expert drivers: all of them had held a Spanish car driv-
ing license since for at least 7 years (M = 22 years ± SD = 5.70, range: 7–32
years). Participants reported a mean annual car driving mileage of ∼47,000
kilometers [km] ± SD = 42,508 (range: ∼7,000-150,000 km/year). All par-
ticipants had normal or corrected to normal vision. They abstained from
alcohol and nicotine during the 12 and 3 hours, respectively, preceding the
driving session. Additionally, they had to get at least 7 hours of sleep the
night prior to the study. For screening purposes, we measured subjective lev-
els of arousal before the driving session using the Stanford Sleepiness Scale
(SSS) (Hoddes et al., 1972). None of the participants scored more than 3
(SSS = 1.65 ± 0.55 SD, 1–3 range). Had they done so, they would have been
excluded from further testing (Diaz-Piedra et al., 2019). All the participants
were refunded for their time.

Instruments and Materials

Driving Simulator and Performance
Participants drove a semi-dynamic (four-degree-of-freedom motion platform,
see Figure 1) driving simulator (Nervtech™, Ljubljana, Slovenia) recreating



370 Stasi et al.

a middle-sized electric automatic vehicle (equipped with autopilot and full
self-driving capability features that amounts to SAE International Level 4
vehicle automation). To control the vehicle, participants used a real Skoda
Octavia steering wheel (Škoda Auto a.s, Mladá Boleslav, Czech Republic),
active force-feedback pedals (Sensodrive GmbH, Weßling, Germany) while
seating on a real Ford-Max (Ford Motor Company, Dearborn, Míchigan,
US) seat.

We employed SCANeR studio software (AVSimulation, Boulogne-
Billancourt, France; version DT 2.5) to develop the virtual environment. The
driving scenario was presented on three HD screens set into a panoramic
arrangement to simulate the horizon of the virtual world (∼130◦ field of
view). A 9-inch, dedicated screen, placed behind the steering wheel, dis-
played an analogic speedometer. For further information on the features of
the simulator, see Gianfranchi and Di Stasi, 2021.

Driving performance parameters (sample rate 125 Hz) were automatically
extracted for each distraction period (in MD) via a customized MATLAB
(Mathworks Inc., Natick, MA, USA) algorithm. Specifically, we extracted the
mean and SD of the driving speed (km/h), the vehicle lateral position (meant
as the SD of the lateral shift of the virtual vehicle from the middle of the rear
axle of the vehicle towards the center of the lane). We also calculated the
average time spent speeding (seconds). Following Spanish traffic regulations,
we defined speeding as the amount of time driving at a speed 5% or more of
the speed limits.

Figure 1: (Left) The driving simulator used for the study. (Center) The interface of the
App “Old School Test Drive” (Adderit Games), used as one of the concurrent tasks (two-
hand task condition). (Right) The BiosignalPlux Research Kit wearable ECG-solution
and its electrodes recording configuration.

Concurrent NDRT
We selected two on-line concurrent tasks that implied the interaction with a
tablet installed in the simulator, using one-hand (i.e., keeping the tablet on
its stand) or both hands (i.e., after removing the tablet from its stand). Dur-
ing the one-hand task, participants answered to incoming SMS containing
a series of two-digit arithmetical operations (additions without regroup-
ing). The operations were randomly chosen from a predetermined set,
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which was the same for all the participants. For this task, as a perfor-
mance index, we considered the number of arithmetic operations correctly
answered. During the two-hand task, participants performed a game appli-
cation (app) that required eye-thumb coordination (“Old School Test Drive”
[Adderit Games], v1.2, available at https://play.google.com/store/apps/details
?id=com.adderit.oldschooltestdrive&hl=en_US&pli=1). This app simulated
the bimanual visual-motor coordination task required by the Spanish Trans-
portation authority for obtaining the driving license. The driver needs to
coordinate and dissociate movement of each hand while interacting with a
continuously moving stimulus. For this task, we considered the total mean
score generated by the app as a performance index. To compare both indices,
we performed a min-max normalization of the scores obtained. Thus, all
scores obtained were transformed into percentages.

Finally, to assess the perceived task complexity associated to both NDRT,
we used a single item (0-100 scale; with 0 meaning ‘not complex at all’ and
100 meaning ‘very complex’).

Cardiac Activity Recordings and Analysis
We employed the BiosignalPlux Research Kit (PLUX Wireless Biosignals S.A.,
Lisbon, Portugal) to monitor participants’ cardiac activity (electrocardio-
gram [ECG], see Figure 1). The system included a wearable hub with an
8-channel configuration (analogue ports) of 16-bit per channel resolution,
using a Bluetooth data transmission technology for the synchronization with
the simulator. A set of BiosignalPlux disposable, self-adhesive, pre-gelled,
Ag/AgCl electrodes (24 mm diameter) was employed for ECG. The ECG
was recorded with a single-lead local differential bipolar sensor (0.5-100
Hz bandwidth, ± 1.47 mV range, 400 Hz sampling rate) including a pos-
itive, a negative, and a reference cable, each one ending with a dedicated
electrode socket. The electrodes were placed in a chest Lead II configura-
tion (Cacioppo et al., 2007) after having disinfected and gently cleaned the
corresponding skin sites: one electrode on the depression below each of the
shoulder blades (reference on the left side, positive on the right side) and one
electrode (negative) on the anterior 5thintercostal space of the left side.

ECG signal was analyzed via customized MATLAB algorithms. The sig-
nal was first down-sampled to 250 Hz and then filtered with a time-domain
bandpass filter (1-100 Hz) and a notch filter (50 Hz; Chatterjee et al., 2020).
The R peaks were automatically detected in the filtered signal using a 0.6 mV
fixed detection threshold, with a 0.3 seconds searching range (Kwon et al.,
2018). The inter-beat intervals (ibi) were calculated as the mean time differ-
ence between two successive R peaks over each 5-minute distraction periods.
Then, the heart rate (HR) and standard deviation of the R-R peaks interval
(SDRR) were calculated as follows: HR= 60/mean (ibi) and SDRR= SD (ibi
×1,000).

Procedure

The study was run under the guidelines of the University of Granada’s
Institutional Review Board (IRB approval 1528/CEIH/2020). After sign-
ing the consent form, participants filled in the SSS. Then, we provided

https://play.google.com/store/apps/details?id=com.adderit.oldschooltestdrive&hl=en_US&pli=1
https://play.google.com/store/apps/details?id=com.adderit.oldschooltestdrive&hl=en_US&pli=1
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each participant with a cotton short-sleeve T-shirt to be worn during the
entire experiment (see Diaz-Piedra et al., 2019). Afterwards, participants
had a brief training session with the simulator and the tablet. Before the
actual experimental session, we placed the ECG sensors (along with other
psychophysiological sensors, not reported here) outside the simulator.

The experimental session started with a 5-minute familiarization phase
with all the instruments and procedures once again, but with the participant
alone in the simulator. Before starting the first driving scenario, participants
had a 5-minute acclimation driving phase. Between the two driving scenar-
ios, participants rested for five minutes. In both driving scenarios, the main
participants’ task during MD was driving as if they were on a real highway
(speed limit 130 km/h), keeping their hands on 10–10 position. The main
task during AD was to supervise the system.

Data Analysis

For the assessment of the NDRT effects on the ECG-based metrics and
perceived task complexity level, we ran separate 2 × 2 repeated measures
ANOVA with the Driving modality (MD vs. AD) and Task modality (one-
hand vs. two-hand) as the independent within-participants variables. To
analyze the driving performance (in MD), we ran separate dependent samples
t-tests, one for each variable (average speeding time, driving speed [and its
SD] and lateral shift position) with Task modality (one-hand vs. two-hand)
as the independent within-participants variable. We used Holm-Bonferroni
corrections for multiple comparisons.

RESULTS

During the driving simulation, we continuously recorded drivers’ ECG and
their performance at the NDRT (with one/two hands) while the vehicle was
set in AD or MD. After each NDRT, we also collected the perceived levels of
task complexity (see Figure 2 and Table 1).

Table 1. Descriptive data (n = 32) for the main variables organized by driving modality
(manual vs automated) and task modality (one-hand vs two-hand concurrent
NDRT).

Variables Manual driving Automated driving

One hand Two hands One hand Two hands

Speeding time (s) 10.1 (12.8) 5.7 (6.7) - -
Average speed (km/h) 115.4 (11.7) 108.0 (14.3) - -
SD average speed (km/h) 7.1 (2.2) 9.8 (3.1) - -
SD vehicle lat. position (m) 0.4 (0.1) 0.6 (0.1) - -
Task complexity [0-100] 64.4 (18.0) 88.6 (18.0) 36.1 (23.9) 47.8 (25.0)
NDRT Performance [%] 52 (19.7) 29 (17.4) 51 (19.7) 48 (19.5)
Heart rate [bpm] 71.5 (7.9) 73.2 (7.8) 70.7 (7.4) 71.7 (7.7)
SDRR [ms] 49.2 (17.6) 58.2 (17.7) 51.9 (18.9) 58.8 (20.3)

Note. NDRT = non-driving-related task; SD = standard deviation; SDRR = SD of R-R intervals.
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First, to ensure that the selected NDRT elicited an extra complexity to the
driving task, we recorded and analyzed the driving performance while the
vehicle was in MD. Indeed, while performing the NDRT with both hands
(the most complex concurrent task), participants had less accurate control
of the speed and lateral position of the vehicle, they drove slower with
shorter periods of time speeding; all t-values31 > 2.72, all p-values < 0.05
(see Table 1). These results indicated the correct selection of the concurrent
tasks.

Perceived task load while engaging with NDRT was affected by Driv-
ing modality, F1,31 = 90.02, p < 0.05, η2p = 0.74, and Task modality,
F1,31 = 70.80, p < 0.05, η2p = 0.70, as well as by their interaction,
F1,31 = 8.48, p < 0.05, η2p = 0.21. As expected, performing a concurrent
task was judged more demanding during MD, especially for the two-hand
task (all corrected p-values < 0.05).

Performance at NDRTs was affected by Driving modality, F1,31 = 6.61,
p < 0.05, η2p = 0.18, Task modality, F1,31 = 13.05, p < 0.05, η2p = 0.30, as
well as by the interaction between the two factors, F1,31 = 11.321, p < 0.05,
η2p = 0.27. That is, NRDT performance drastically deteriorated when the
concurrent task involved the two hands and the vehicle was set in MD
(corrected p-values < 0.05).

Figure 2: Estimated marginal means (n = 32) for drivers’ heart rate and SDRR (top
graphs), subjective ratings of complexity, and NDRT performance (bottom graphs)
across the four experimental conditions. The orange line represents manual driving
(MD) scenarios, while the green line represents automated driving (AD) scenarios.
error bars represent the SD.

ECG-metrics were similarly influenced by the Driving Modality and Task
Complexity. Heart rate was influenced by Driving Modality, F1,31 = 14.20,
p < 0.05, η2p = 0.31, and TaskModality; F1,31 = 34.29, p < 0.05, η2p = 0.52.
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SDRR was only significantly influenced by the Task Modality, F1,31 = 36.99,
p < 0.05, η2p = 0.54. In both cases, the interactions between the two fac-
tors were not significant, all F-values < 1.74, p-values > 0.05. That is, Task
Modality similarly modulated both ECG-metrics, with the most complex task
leading to higher heart rate and SDRR. Furthermore, AD was associated with
a lower heart rate as a consequence of the reduced demands required by the
driving task (covered by the automated system).

DISCUSSION

This experiment simulated conditions where drivers were induced to multi-
task. The aim was to understand if concurrent tasks affected cardiac-based
indices as well as performance and subjective indices while driving or super-
vising the automated system. To do so, we designed two driving scenarios,
which included both AD and MD modalities, while participants had to
perform two types of concurrent tasks using a tablet, with one hand (i.e.,
answering to incoming SMS containing arithmetic operations) and two hands
(i.e., using a dedicated app to perform a bimanual coordination test) besides
driving/supervising. These concurrent tasks elicited different degrees of task
load as participants’ driving performance showed: While driving engaging
with a two-hand NDRT, driving style was less smooth (higher speed variation
and less lateral control of the vehicle). However, in this experimental condi-
tion (MD, two-hand NDRT), participants over speeded less –as they drove
most of the time at a slower speed. Drivers’ behavioral self-regulation might
explain these results. That is, when drivers perceive an increased presence of
complexity and risk (i.e., multitasking while MD), they would self-regulate
their behavior (reducing the driving speed) to adapt to the specific over-
loading situation (Paire-Ficout et al., 2021). Indeed, in both AD and MD,
participants would perceive as more demanding the two-hand NDRT. Fur-
thermore, participants would have a better NDRT performance and perceive
less task load during AD than during MD (e.g., Naujoks et al., 2016). ECG-
related metrics mimicked the behavioral and subjective results, in line with
classic results on ECG and task load manipulation (e.g., De Waard 1999).
HR would be lower during AD than during MD. That is, participants would
need to invest less effort when engaging in the NDRT and the driving task is
automatized (see also Carsten et al., 2012). If we order the four experimental
conditions by their degree of complexity, HR clearly increases as the over-
all condition becomes more demanding (i.e., the task load increases).While
these results confirm original (De Waard 1999) and more recent findings
(see e.g., Alrefaie et al., 2019), it is important to acknowledge that physi-
cal activity (i.e., motion artifacts) during MD and the two-hand concurrent
task might have (in part) influenced cardiac-based metrics variations (e.g.,
Zontone et al. 2020). Finally, while Task modality had the same influence
on SDRR and heart rate, Driving modality did not. That is, we observed
a different sensitivity between these two metrics. SDRR is considered to be
more accurate when calculated over 24-hour windows (Shaffer and Ginsberg
2017) than over 5-minute periods, such as the ones used in this study. Thus, it
is possible that our methodological decision have led to a misrepresentative
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finding. Future studies should explore alternative time/ frequency-domain
ECG-related metrics to assess secondary task engagement during automated
and manual driving.

CONCLUSION

It is well known, that driving while engaging in NDRTs represents a potential
hazard to road safety. However, the use of DMS (e.g., Morales et al., 2017)
as well as the development of new driving modalities (partial/fully AD) can
help to reduce the negative effects derived by driving when overloaded or
distracted (e.g., Wilson et al., 2022). Here, we present findings that have the
potential to improve DMS design and road safety by showing that accurate
measurements of driver engagement can be provided without the need to
use gaze/face/head camera detection. They can be key to assess future driver-
vehicle interactions using for example, non-contact, more realistic, heart-rate
radar-based sensor solutions embedded into the driver seat (e.g., Castro et al.,
2019).
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